public class DoubleCarryCRT extends DoubleCRTMath
double
type.The algorithm is parallelized for multiprocessor computers, if the data fits in memory.
The parallelization works so that the carry-CRT is done in blocks in parallel. As a final step, a second pass is done through the data set to propagate the carries from one block to the next.
Constructor and Description |
---|
DoubleCarryCRT(int radix)
Creates a carry-CRT object using the specified radix.
|
Modifier and Type | Method and Description |
---|---|
DataStorage |
carryCRT(DataStorage resultMod0,
DataStorage resultMod1,
DataStorage resultMod2,
long resultSize)
Calculate the final result of a three-NTT convolution.
|
void |
setParallelRunner(ParallelRunner parallelRunner)
Set the parallel runner to be used when executing the CRT.
|
add, compare, divide, multiply, subtract
baseAdd, baseDivide, baseMultiplyAdd, baseSubtract
public DoubleCarryCRT(int radix)
radix
- The radix that will be used.public DataStorage carryCRT(DataStorage resultMod0, DataStorage resultMod1, DataStorage resultMod2, long resultSize) throws ApfloatRuntimeException
Performs a Chinese Remainder Theorem (CRT) on each element of the three result data sets to get the result of each element modulo the product of the three moduli. Then it calculates the carries to get the final result.
Note that the return value's initial word may be zero or non-zero, depending on how large the result is.
Assumes that MODULUS[0] > MODULUS[1] > MODULUS[2]
.
resultMod0
- The result modulo MODULUS[0]
.resultMod1
- The result modulo MODULUS[1]
.resultMod2
- The result modulo MODULUS[2]
.resultSize
- The number of elements needed in the final result.ApfloatRuntimeException
public void setParallelRunner(ParallelRunner parallelRunner)
parallelRunner
- The parallel runner.