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Abstract

Apfloat isa C++ arbitrary precision arithmetic package. Multiplications are done using Fast
Fourier Transforms for O(n log n) complexity. The transforms are done as Number Theoretic
Transforms to avoid round-off problems. Three different moduli are used for optimal memory
usage. The final result is achieved using the Chinese Remainder Theorem. The algorithms are
optimized for very high precision (more than 100 000 digits). The package is written to be
easily portable, but also includes assembler optimization in critical parts for various processors
for maximum performance. The software is released as freeware and is free for non-
commercial use.

This document and the software are located at http: //wwv. i ki . fi/~nt ol a/ apfl oat/
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Legal Notice

This program (the apfloat source mde and documentation) is freewvare. This means that you
can fredy use, distribute, modify and compile it, but you cant sell it or any part of it. Basicdly
you can do anything with it, but the program or any part of it will always be free That isyou
cant charge money or other valuables or services for it.

Although you can use this program fredy, it would perhaps be considered to be good manners
to give the original author credit for hiswork, if this program is ever used for anything useful
or remarkable.

The author takes no responsibili ty whatsoever for any damage or harm that could result from
using this program. The program has been thoroughly tested, so using it should be fairly safe.
However, exeauting it as root is perhaps not a very good idea

Oncemore (a standard disclaimer):

THIS SOFTWARE IS FROVIDED “ASIS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS&ED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY AND
PERFORMANCE OF THE PRODUCT ISWITH YOU. SHOULD THE PRODUCT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

IN NO EVENT WILL MIKKO TOMMILA, THE AUTHOR OF THIS SOFTWARE, OR
ANY OTHER PARTY WHO MAY HAVE REDISTRIBUTED THE PRODUCT AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SFECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PRODUCT (INCLUDING BUT NOT
LIMITED TO LOSSOF DATA OR DATA BEING RENDERED INACCURATE OR
LOSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PRODUCT TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSBILITY OF SUCH
DAMAGES.

1. Introduction

The original ideafor this program got started from the author's personal interest in cdculating
mto as many dedmal digits as possble & fast as possble. It's difficult to imagine ay (other)
reasonable use for this program. Calculations like this can of course be used for example to
test a omputer system's reliability since asingle aror in one aithmetic instruction will render
the rest of the cdculated dgitstotally wrong. There could be abugin this program also.

Use of this padkage has been made a& smple & possble so that the user's need for spedal
customization and knowledge of the inner structure of the program is minimized. Despite the
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simplicity the program is nealy as efficient as what would be adieved with customized tricky
programming.

The author is aware that there exist several other smilar multipredsion padckages (like [11]
and [12]). This program was written because of the author's personal interest in the subjed.

All comments about the program and espedally bug reports gould be sent by e-mail to the
author (Mikko.Tommila@iki.fi).

2. Compili ng the Library

First unpadk the compressed sourcefile and the gopropriate makefile padkage for your
compiler: djgpp, bcc32, ve, Linux or general UNIX gcc, or just any general C++ compiler (the
makefile is for gcc, so you may want to change that). Then simply run meke i b,

If you use aUNIX system, you may need to modify the makefile to tell the compiler for
example to enable integer multiplicaion and division instructions or to set long ints to be 64-
bit (if you use the 64-bit version). Simply add the required optionsto the OPTS = lineinthe
makefile. On most platforms, however, you should be &le to compile the cde without any
changes. The file readme.1st has more troubleshoating hints.

3. Using Apfloats

Using the apfloat library is smple. After compiling the library you only need the healer file

apfloat.h plus the compiled library. In ead file you plan to use apfloats in you should aways
#i nclude "apfloat.h". Then smply write aprogram like

#i ncl ude <i ostream h>
#i ncl ude "apfl oat. h"

i nt mai n(voi d)
apfloat x = 2;

X. prec(1000);
cout << sqrt(x) << endl;

return O;

}

and compile it with the apfloat library (apfloat.a or apfloat.lib) you creaed before.

3.1 Constructors

Y ou can congtruct an apfloat from an integer, a double, a charader string or another apfloat.
Integers have infinite predsion hy default (adually 0x7FFFFFFF base units in a 32-bit address
space, doubles about 16 dedmal digits and strings the predsion of the string length. One base
unit is 10° or 9 dedmal digits in 32-bit implementations, 19 dgits in 64-hit implementations
and 15or 7 digitsin the floating-point implementations (doubles or floats correspondingly).
For example:



apfloat a = 5; I/ Infinite precision
apfloat b =5.0; // Precision is about 16 decimals
apfloat c ="123.456789012345678901234567890";  // About 30 decimals

The constructors have the precision as the second optional argument. For example:

apfloat x = apfloat(5, 1000); I/l Precision is 1000 digits
apfloaty = apfloat(1.5, 2000); I/ Precision is 2000 digits
apfloat z = apfloat("123", 3000); // Precision is 3000 digits

3.2 Arithmetic Operations and Functions

The standard arithmetic operations

1 +\ ¥ 1 +
1

*
1

/=
++

are overloaded for the apfloat class. Also the following functions are overloaded:

invroot(x, n) // Inverse nth root (using Newton's iteration)
root(x, n) // Integer nth root (inverse of invroot)
sqrt(x) /I Square root (optimized)

cbrt(x) /I Cube root (optimized)

pow(x, n) // Integer power

floor(x) /I Floor function

ceil(x) /Il Ceiling function

abs(x) /I Absolute value

modf(x, * i) // Splits to integer and fractional parts
fmod(x,y) // x moduloy

agm(x,y) /I Arithmetic-geometric mean

log(x) // Natural logarithm

exp(x) /I Exponential function

pow(x, y) // Arbitrary power xY

sin(x) /I Sine (included in apcplx.h)

cos(x) /I Cosine (included in apcplx.h)

tan(x) /I Tangent (included in apcplx.h)

asin(x) /I Inverse sine  (included in apcplx.h)

acos(x) I/l Inverse cosine (included in apcplx.h)

atan(x) /I Inverse tangent (included in apcplx.h)

atan2(x, y) // Angle of (x, y) on the complex plane (in apcplx.h)

sinh(x) /I Hyperbolic sine

cosh(x) I/l Hyperbolic cosine

tanh(x) // Hyperbolic tangent
asinh(x)  // Inverse hyperbolic sine
acosh(x)  // Inverse hyperbolic cosine
atanh(x)  // Inverse hyperbolic tangent

Division uses the invroot function.

Thereisafunction pi( prec) which gives tcalculated to prec  digits.



There are dso stream input and output operators, so you can for example

apfloat x = "3.1415926535";
cout << x;

This outputs the number in a floating-point style number, like

0. 0000000031415926535e9

If you want a prettier output (no exponent, al the digits), there is a manipulator:

cout << pretty << x;

will output

3. 1415926535

3.3 Member Functions

Apfloats have the following member functions:

int sign(void);

voi d sign(int newsign);

| ong exp(void);

voi d exp(l ong newexp);

size_t prec(void);

voi d prec(size_t newprec);

int location(void);

void | ocation(int new ocation);
voi d uni que(voi d);

voi d swapto(char *fil enane);
voi d swapfrom(char *fil enane);

The sign() function returns the sign of the number (1, 0, or —1 for positive, zero and
negative numbers correspondingly). si gn(s) setsthesigntos.

exp() correspondingly returns and sets the exponent. Note that the exponent can only be set
in multiples of the number of digitsin one base unit.

prec() returnsand setsthe predsion. Thereisa mnstant named | NFI NI TE, which can also
be used. It'sthe predsion integers are set to by defaullt.

| ocation() returnsand setsthe locaion of the datain the mantissa of the number. It can
have one of the mnstant values defined in apfloat.h: MEMORY or DI SK. There's no reason to
use this function and moving too big numbers to memory can cause the program to abort or
crash unexpededly.

uni que() ensuresthat the data of the number is a unique py. Due to the pointer structure of
the program more than one number can point to the same data. There should be no reason to
ever use this function.



swapt o(char *filename) "swaps'the number to the spedfied file. That is, the number is
saved to disk and deleted from your program (the number becmes uninitialized). The function
isimplemented so that if the number aready resides on disk, this function does very little (just
appends the number's member fields to the data of the mantissa) and is very efficient. Thisis
an useful function for saving numbers to disk for e.g. transferring them between programs. It
is far more dficient than printing and inputting the number viafile I/0 streams.

swapfrom(char *filenanme) "swaps'the number from the spedfied file, that isloadsit from
afile where anumber was saved previously with swapt o() . The spedfied file is esentially
deleted from disk. Again, if the number is very big and should by default reside on disk, this
function is very fast.

Mostly you will only need the prec() function.

3.4 Complex Numbers

Complex arithmetic can be done with the apconpl ex datatype. The necessary dedarations
are in the file apcplx.h. All the apcomplex functions are compiled in the apfloat library.

Apcomplex numbers relate to apfloats just like standard C++ complex numbers relate to
doubles. An apcomplex number is constructed from two apfloats: the red part and the
imaginary part. For example:

apconpl ex z = apconpl ex(0, "1el1000");

All the mathematicd functions are dso overloaded for the apcomplex type, as are the stream
input and output operators. Also the standard C++ complex manipulators (red, imag, conj,
norm and arg) and the polar constructor are overloaded.

The red and imaginary parts of an apcomplex number can be diredly accessed as the members
re and im. For example:

Z.imprec(100);

The apcomplex classalso hasa prec() member function, which returns the predsion of the
number. The predsion cannot be set this way, it must be set explicitly via the membersre and
im.

Note that in order to use the red trigonometric functions (sin, cos, tan and their inverses), you
must include apcplx.h, sincethese functions are caculated via complex functions.

There ae some examples of complex arithmetic in the file cplxtest.cc.

3.5 Integers

Integer arithmetic can be done with the api nt datatype. The necessary dedarations are in
the file apint.h. All the apint functions are compiled in the apfloat library.
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Apint numbers relate to apfloats just like standard C ints relate to doubles. An apint number is
an arbitrary predsion integer. For example:

apint i = 100;

All the aithmeticd operations are overloaded for the apint type, including the modulo %and
% operators and the shifting operators (<< and >>). Also the stream input and output
operators are overloaded. Apints are dways output with full predsion (the pretty modifier
is used for the output). Arithmeticd operators with other arbitrary predsion data types are
also overloaded. Conversion from apint to apfloat should happen automaticaly when
necessary. The predsion of an arbitrary predsion integer is naturally always infinite and it
cannot be changed. Also the aithmetic with apints works with exad predsion aways. Thisis
obvioudly required for integer divison and modulus.

The following mathematica functions are implemented for the apint class

pow( X, n) /1 1nteger power
abs(x) /1 Absol ute val ue
div(x, y) /1 Splits to quotient and remai nder, returns apdiv_t
ged(x, vy) /1l Greatest common divisor
lem(x, Y) /1 Least conmon nultiple
/1

powrod(x, y, n) I nt eger power nodul o a nodul us

There ae some examples of arbitrary predsion integer arithmetic in the file inttest.cc.

3.6 Rationa numbers

Arbitrary predsion rational arithmetic can be done with the apr ati onal datatype. The
necessary dedarations are in the file aprat.h. All the aprational functions are compiled in the
apfloat library.

An aprational number is constructed from two apints: the nominator and the denominator. For
example, the following code dedares the rational number 2/3:

aprational r(2, 3);

All the dementary arithmetic operations are overloaded for the aprational type, as are the
stream input and output operators.

The nominator and denominator of an aprational number can be diredly accesed asthe
members nom and den. For example:

cout << r.nom

As the members of the aprational class(the nominator and the denominator) are integers, both
of them have infinite predsion. This cant be dhanged. Y ou can get afloating-point
approximation of the rational number with the member function appr ox( pr ec) , which
returns an apfloat with the desired predsion prec. Y ou can mix apint and aprational numbers
in arithmetic operations, but when you are using apfloats with aprational numbers, you should



always use explicit floating-point approximations of the rational numbers with the member
function approx() .

Because rational numbers are not uniquely defined, unlessthe nominator and the denominator
have no common fadors, this arises ©me questions after every arithmetic operation is done.
Should the nominator and denominator be reduced so that they have no common fadors? As
this can be quite tedious and sometimes is not necessary, there is a static member variable
cdled aut or educe. By default it is st to t rue, which meansthat after every operation the
nominator and denominator are reduced to the smallest possble numbers. If it is %t to f al se,
this reduction is not done and the nominator and denominator can grow unnecessarily big.
This can speed upthings, if it is known that the nominator and denominator will have no
significantly large common fadors. Y ou can still manually reducethe rational number to the
smallest possble numerator and denominator by cdli ng the member function reduce() . The
reduction smply first cadculates the greaest common divisor of the nominator and
denominator and then divides the nominator and denominator by the gcd. Because this can be
highly inefficient, it isrecommended to aways %t the aut or educe parameter to falseif it is
feasible.

The function pow(x, n) isoverloaded for the aprational class(for the parameter x).

There ae some examples of rational arithmetic in the file rattest.cc.

3.7 Things to Note

- When the numbers are stored on disk, the program will creae temporary filesin the arrent
direaory. The files are named XxXxXxxxx.ap, where Xxxxxxxx is a number starting from
00000000 Naturally you should have permisson to write filesin the arrent diredory.

- Remember to set integers to afinite predsion before doing arithmetic on them which will
creae an infinite dedmal expansion (like sart (2) or 2/3). For example

apfloat x = 2;
cout << sqrt(x);

will exhaust virtual memory or result in a aash. Insteal define the predsion in the
constructor:

apfloat x = apfloat(2, 1000);
cout << sqrt(x);

or afterwards, like

apfloat x = 2;
X. prec(1000);
cout << sqrt(x);

- It probably doesnt make much sense to construct high-predsion apfloats from numbers
with infinite binary expansions using the anstructor from a double. For example

apfloat x = apfloat(1.3, 1000);
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will be crred only to at most 16 dgits, not 100Q Thisis becaise the number 1.3 cannot
be presented exadly in base two with afinite number of bits (which isthe cae when you
use adouble). Depending on your compiler there might be an error of about 10™° with any
doubles (like 0.5). Instead you should use

apfloat x = apfloat("1.3", 1000);

- The compiler will probably give alot of warnings when you compile the wde. Thisis due
to the structure of the apfloats. Since an apfloat only contains a pointer to the adual data
and only pointers are exchanged in constructors and assgnment operations, temporary
objedswill be used in suspicious constructors. For example

apfloat x = apfloat(2, 1000);
cout << sqrt(x) << endl;

will use atemporary apfloat. The first line mnstructsan apf | oat (2, 1000) . On the
seoond line it's copied to the parameter that goesto sart (). If al the data was copied a lot
of time and spacewould be wasted. Only alink to the ad¢ual datais added and then later
removed at the function return, so much time is saved. A temporary objed sart(x) is
creaed. It isthen output to cout. Then the temporary objed is destroyed. There is nothing
wrong with this, but you'll get a warning.

- This padkage is designed for extreme predsion. The result might have afew digits lessthan
you'd exped (about 10) and the last few (about 10) digits in the result might be inacarate.
If you plan to use numbers with only afew hundred dgits, use aprogram like PARI (it's
free ad available from ft p: // megrez. mat h. u- bor deaux. fr), or a @mmercia program
like Mathematicaor Maple if posshle.

3.8 Using Some Other Base than Base 10

If you want to do cdculations in some other base than dedmal (base 10) use the apbase()
function. Note that you can't change the base between cdculations (or you shouldnt, sinceit
will result ina aash). That is, your code should delete dl the apfloats crated so far before
changing the base. Thusit's agood ideato change the base in the beginning of your program
and then not change it after that. For detailed instructions refer to the file bases.txt in the
padkage.
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4. Classes and Data Structures

datastruct

size : size_t
location : int
gotdata : bool
position : size_t
blocksize : size_t
fileno : int

modint

33:32:28 modulus : rawtype
readydata() datal] value : rawtype

cleardata()

openstream()
closestream()
resize() fstream
relocate() fs
capture()
release()

apfloat

prettyprint : bool

sign() ——
exp() nlinks : int

prec() ap Slgn.: int
location() 1.n exp: Iong
unique() prec : size_t
swapfrom()
swapto()

apstruct

Figure 1. Class diagram

Practicaly al the work the program does is done on the datastruct class. The datastruct stores

the mantissa of the number, that is all the significant digits. The datais accessed through the
getdata() and putdata() functions. The dataitself can reside either in memory or on disk.

When a function wants to use the data of the mantissg, it calls get dat a(posi tion, size).
It returns a pointer to the data. If the number was located in memory, it only returns the
pointer to the beginning of the data plus the parameter posi ti on. If the number was on disk,
abuffer of size si ze isalocated and the data from the appropriate position in thefile is read
to the buffer. Then the address of the buffer is returned. Thus the data will be accessed the
same way whether it is located in memory or on disk.

When the function is done with manipulating the data, it calls put dat a() . If the number was
located in memory, putdata does nothing since the function aready changed the datain the
right position. If the number is located on disk, putdata writes the data to the right file position
and frees the memory that was allocated for the buffer.
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Correspondingly there dso exist functions r eadydat a( posi tion, size) and

cl eardat a() . Readydata only readies the buffer for writing data to the position (with
put dat a() ), but nothing is assumed of the previous contents of the datain that position.
Cleadatajust dedlocates the buffer that was previoudly allocated with get data() for
reading puposes only.

The datastruct classalso naturally includes the data size and the location of the data.

The datastruct classincludes only the raw data of the number. The apstruct classis derived
from the datastruct class It includes all additional data @out the number: sign, exponent,
predsion and number of links to the data.

The apfloat class the only part visible to the end user, only contains a pointer to an apstruct.
Thisway apfloats can be used effedively just like normal floating-point numbersin C++.
Every time anumber is passed to afunction as an argument or assgned (the =operator) to
another variable a ©py is made of the number. If al the data (possbly tens of megabytes) was
copied every time, a huge anount of time and spacewould be wasted. This is why copying
apfloats means only that the pointer is copied and the number of links in the data is increased
by one. If the number needsto be changed (for example by changing the predsion with the
prec() member function), an original copy isfirst creaed with the uni que() function.
When an apfloat is destroyed, only alinks is removed from the data. If the number of linksto
the datais zero, then the adual datais destroyed. All arithmetic operations aways creae a
new (temporary) apfloat, so this method works very well (and it's completely invisible to the
user).

Some aithmetic operations, like aldition, subtradion and multiplication also benefit from the
pointer structure. If the aguments (the pointers) to the operation are identicd, the numbers
are known to be equal. Espedally multiplication becomes gjuaring, which is alot faster.

Since multiplication of apfloats (the most intensive part of the program) is done using Number
Theoretic Transforms (see gopendix A), the datais gored as the modint class Modints are
integers, but the aithmetic operations are overloaded so that the aithmetic is aways done
modulo the global variable modint::modulus (or sometimes modulus). This makes coding the
transform functions very simple and intuitive, yet very effedive due to inline functions. Even
assembler optimization is possble becaise gcc supports very flexible inline assembler
statements (seesedion 7).

The program also has a“bigint” data type, which is basicdly only used for temporary
cdculations in the Chinese Remainder Theorem (see gpendix B). Bigints are simply arrays of
unsigned integers. Relatively short arithmetic (like 96-hit) is fastest using bigints, sincethe
hardware in general direaly supports them.

Sometimes redly big blocks of modints need to be dlocaed (tens of megabytes). Most
compilers or operating systems san to handle dlocation of very big memory blocks quite
strangely. When the dlocated block is freed, the memory is not adually freed, but somehow
just marked free If alarger block is allocated right after that, the previoudly alocaed block
cannot be re-used and aimost double the necessary memory gets allocated. Thiswill result in
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either running out of memory or extreme swapping and heavily degraded performance when
running at the limits of available memory (which should be the cae).

Before any operations on the apfloat classare done, certain initial functions must be
performed. These ae done in the function api ni t (). To automaticdly cdl this function at
the beginning of the program, and the function apdei nit () at program exit, which cleans up
the thingsthat api nit () did, adummy classis constructed in thefileinit.cc. This class
apfloatinit, has only one instance and it is gatic. The nstructor for this class smply cdls

api ni t () and the destructor cdls apdei ni t (). Thusat the beginning of the program, before
mai n() isrun, the constructor for this gatic apfloatinit instanceis of course cdled. After

mai n() hasfinished, the destructor for the instanceis cdled. So, the apinit () and

apdei nit () functions are performed automaticaly.

All the datain the program is al ocated and dedlocated dynamicaly during run time with the
new ] and del ete[] operators. However due to the memory allocaion problem mentioned
above adlightly different approach was implemented. At the program start, in the function

api ni t (), amemory block of maximum size (power of two or threetimesa power of two) is
alocaed. The pointer isin the global variable wor kspace. It'sfreed at program exit, that is
when apdei ni t () iscdled. Fortunately, C++ makes possble to overload the new] and
del ete[] operators for the modint class ® that every time ablock larger than the global
variable Menorytreshol d (seesedion 5) is“alocaed”, a pointer to workspaceis returned.
It's never dedlocated with del et e[ ] . If the workspaceis “allocated” twice, the program
aborts with an asertion failure. This $ould never happen, however, since normally numbers
larger than Menorytreshol d are stored on disk. Only one (large) buffer at atime is allocated
in memory for intermediate computation results. Blocks snaller than Menorytreshol d are
allocaed normally with the rawtype's new[] and del ete[] operators. Thisiswhy you
should never change anumber's | ocati on() unlessyou know exadly what you are doing.

5. Adjusting System Parameters

Thefile gfloat.ini (must be in the aurrent diredory) can contain some (optional) information
about your system. It's highly recommended that you chedk the values espedally if you plan to
do very long cdculations. It can have the following lines:

Ransi ze=41943040

Thisis your computer's memory sizein hytes. An estimate of the program and operating
system code sizeis subtraded from this value to get the maximum avail able power-of-two or
threetimes a power of two block size

Cachellsi ze=8192
The procesr's level-1 cade sizein bytes. This has no grea effea on the performance, so if
you dont know it, you should probably leave it to 8192

Cachel2si ze=262144
The procesor's level-2 cade sizein bytes. This has no grea effed on the performance, so
you should probably leave it dlone unlessyou are an optimizaion freek.
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Cachebur st =32

The cate'sburst size (or a cade line size) in bytes, typicdly set to 32 or 16. Again this has
no big effed. The cade parameters are only used in matrix transposition in the transform
algorithms (see gpendix D), which takes only a very small part of the total program CPU
time.

Menor yt reshol d=131072

Longer data blocks than this are stored on disk by default. When the numbers are stored in
memory, the program runs dightly faster. Don't set it to too high or the program will swap or
run out of memory.

Bl ocksi ze=65536

Efficient disk I/0 block size (in modints), should be <= Menor yt reshol d. Since alot of data
isread from the disk in reverse order, you should probably set thisto a quite large value for
good performance

NPr ocessors=1

Number of processorsin a multiprocessng system. For normal, single-processor desktop
computers the default value of 1 should be used. Not al versions of apfloat use this parameter.
Currently multithreaded versions of the six-step Fast Number Theoretic Transform are
implemented for Win32 threads and Posix threads. Also a multiprocessng program for
cdculating pi isincluded in the apfloat padkage.

All of the dove parameters can also be spedfied as environment variables. The environment
variables $hould be in uppercase (for example, RAVSI ZE). The environment variables override
the settings in apfloat.ini, if both exist on a system.

A MAXBLOCKSI ZE environment variable can also be spedfied, which will override the setting

cdculated from RAMSI ZE, Thisvariable can be used to diredly spedfy the maximum avail able
memory block size, in modints. It should be used with caution.

6. Multiplicaion d Very Large Numbers

This chapter was inspired by [5].

A multiplicetion is essentially a convolution. For example, [ 411 é 2
consider the numbers 123 and 456 pesented asthe 60 62 63
sequences{1, 2, 3} and {4, 5, 6}, respedively. The linea +oof
convolution is presented in figure 2. If we want to do the ‘Ef“ ‘Ejr[z 53
cdculation using a drcular convolution (and we will ), the + 41 42 43
sequences must be zeo-padded to the length of the sum of 4+ 13 282 27 18
the lengths of the operands. In this case the sequences would 5 6 0 8 8
then be{1, 2, 3,0, 0, 0} and {4, 5, 6, 0, O, O}. Figure 2: Convolution

From the cnvolution sequence carries must be cdculated, sincethe numbers of the sequence
can be larger than the base used. For example if base 10 is used and the result from the
convolution isthe sequence{4, 13, 28, 27, 18, 0}, it must be mnverted to a sequence where
all the numbers are lessthan 10. Since eab number in the sequence represents one “digit” in
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the deamal expansion of the result, the 18 in the least significant position adually means that
the least significant digit is 8 and 1 should be alded to the next digit. It's 27, so the second
least significant digit of the result isthe lowest digit of (27+1) whichis 8, and 2is added to the
third least significant digit etc. Basicdly this is the standard addition scheme, as siownin
figure 2.

The onvolution can ke cdculated very effedively using Fast Fourier Transforms. Normal
complex Fourier Transforms bregk down due to round-off errors with transforms longer than
afew million (acwrding to [5]), so the transforms are done in the field of integers modulo a
prime p where p is of the form kN+1 and N is the transform length. This method also has
severa other advantages like asmpler and more dficient memory usage. For athorough
discusgon, see gopendix A.

In this program threedifferent moduli are used for the mwnvolution and the result is acquired
with the Chinese Remainder Theorem. This has the alvantage of effedive memory usage since
the numbers don't need to be split up to smaller parts to avoid overflow. Now if the modulus
is about 2°" and the base used is 10°, the maximum predsion would theoreticaly be sout 10
billi on bese units or 90 billi on dedmal digits. However there ae threeprimes lessthan 2°* of
the form kN+1 only up to N=2°° when N is a power of two. Actually these threemoduli allow
N to be 3-2°°, so the maximum transform length can be increased by 50% with a stitable
transform algorithm. This corresponds to about 220 million dedmal digits. If more digits are
desired, alarger modulus must be used. This requires use of 64 to 128 bit arithmetic or other
tricks. In the 64-bit implementation the maximum predsion is about 60 billi on digits and in the
floating-point implementations about 790trilli on in the double version and dlightly more than a
million in the short version.

After multiplication can be done dficiently, division, square root and other roots can be
cdculated using Newton's iteration:

e = X+ Xk (L—ax)
+]__

Now xx converges quadraticdly to a™"

The program includes optimized routines for multiplication and division when the multiplier or
divisor isa“short” number, in divison a number with about 9 significant digits or lessand in
multiplication about 450 dgits (depends on your platform).

7. Performance Considerations

Although this program is optimized for optimal use of memory, you should have & least so
much memory that the transforms can be done in memory. Although the program has
optimized “two-pass’ external memory transform algorithms (see[4] for the dgorithm), disk
spedl is © dow that performancewill be doseto zero (it can be more than 30 times dower
compared to the transform being done in memory). This means you should have & least about
1 freebyte of memory per 1.125 dedmal digitsin the largest (longest) number in the
cdculation. Maximum avail able memory is used only in power of two or threetimes a power
of two block sizes. For example if you have 32 MB of memory, you can use 24 MB of it for
the data if the program and the operating system fit in the 8 MB.
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Disk sped is crucial if the numbers are stored intermediately on disk. With arelatively fast
CPU but arelatively ow disk the overall performancewill suffer. Having an efficient disk
cade is also highly recommended.

For some reason the Borland C++ and Visual C++ versions dont work as fast as the djgpp
versions on Windows 95/98, although the cde is virtualy identicd. On Windows NT the
performanceis about the same. The suspeded reason isin how Windows 9598 manages its
memory. For maximal speed, you should get djgppif you use MS-DOS, Windows 95 or

Windows 98. It's freg very flexible and it optimizes well. Djgppis downloadable from
http://ww. del ori e. cont dj gpp/ and various mirror sites.

Note that the djgpp versions can't probably use dl the memory you may have installed on your
computer. Djgpp Vvl seamsto be limited to alocaing 64MB and djgppv2 may be limited to
256 MB. If you have more memory than this and want to utilize it with apfloat, you may have
to use aWin32 version of apfloat. They should be &le to use 2 GB of memory or even more.

If you plan use anon-Intel x86-based platform you should prefer a computer that supports 64-
bit integer arithmetic in the hardware (espedally multiplication). Suitable processors are for
example the DEC Alpha, MIPSR4000(or greaer) and the UltraSPARC. In the 32-hit gcc
implementation the basic modint classmultiplication uses long long ints for multiplication and
remainder. Thiswill be dow if emulated in software with a poor compiler. The 64-bit
implementation doesn't use integer division hardly at all and isredly fast for example on the
Alpha. The floating-point versions gould be preferred only on computers with extremely
goad floating-point performance and abysmally poor integer performance, or when a predsion
of more than 60 billi on digitsis required.

The general 32-bit version doesn't use 64-hit integer arithmetic but both 32-bit integer and
floating-point arithmetic. It might be faster than the 32-bit gcc version if your processor
converts fast between floating-point and fixed-point data types, so you might want to
experiment.

7.1 Assmbler Optimization

Hand-optimizing the ade in asseembler makes only sense when the compiler cant optimizethe
code well. On RISC processors the compiler generates mostly better code than what could be
achieved with hand-optimization, sinceit automaticaly cheds instruction scheduling and
other complicated things. Using assembler thus is useful only when spedal hardware-spedfic
instructions need to be used (like single to double-width integer multiplication).

However on older processors, which were not designed for easy and effedive C compil ation,
like the Intel x86 series, optimizing the aiticd partsin assembler can make the program
several times faster. Thisis obviously due to the small number of registers, bad instruction set
and overall ancient and inefficient processor design.
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7.1.1 Modular Multiplication

The modint classmultiplicaion (multiplication and then remainder) in the Number Theoretic
Transforms (see gpendix A) is the most time-consuming single operation of the whole
program. That iswhy spedal attention was paid to making it as fast as possble.

Some procesors, like the Intel x86 family, have spedal double-width multiplicetion and
division ingtructions in the hardware. That is, you can multiply two 32-bit integers and get the
whole 64-hit result, and dvide a64-bit number by a 32-bit number, supposing the quotient
and remainder fit in 32 bits. This ams naturally to be avery good scheme for doing the
modular multiplicaion, and is acually the best for 386 and 486 pocessors.

The modulo reduction can be done very effediveley in some caes when the modulus is of
suitable form. For example, if the modulus is p=2"*-2**+1 (which is prime and of suitable form
for radix-2 Number Theoretic Transforms up to length 2°%) the remainder of a 128-bit result
(from multiplying two 64-bit numbers) can be done with a few shifts, additions and
subtractions. Now suppose the result of amultiplication is 2**A+B (for example if the result is
stored in two 64-bit registers, A isthe cntents of the upper word and B is the contents of the
lower word). Then

P A+B=(2"-2%2+])A+(2*2-1)A+ B =(2*-1) A+ B(mod p)
which is a shift (or two), an addition and a subtradion. Then the result is about 96 bits and the
operation can be performed again, which should produce aresult of about 64 bits. Chedks for
overflows might require afew extrainstructions. This sould in general be faster than a
normal division instruction (if available), and extremely fast if implemented in spedal
hardware.

This sheme is implemented in the 64-bit version of the kernel of this program, sincethere
exist threesuitable primes for the Chinese Remainder Theorem: 2*-2%+1, 2*-2**+1 and
2°-2%+1. With the two first primes the shifting scheme needs to be done threetimes to
reduce the remainder to 64 bits. This sheme doesnt work very well for 32-bit numbers. First
there exist only two primes of the suitable form: 2°~2°%+1 and 2°~2°°+1. If more powers of
two are alded to or subtraded from the modulus, the number of instructions grows and a
general-purpose division will be faster. If the midde power of two (like 2% in 2°-2°+1) is
very close to the word size (2*%%), very many shifts are required and again the scheme becomes
dow. Seaond, for reasonable transform lengths the middle power of two should be relatively
large (since must be p=kN+1 where N is the transform length) which makes the scheme
useless sincethere smply doesnt exist suitable primes.

Another drawbad is that the transform length must be apower of two which is not the cae
for the Winograd Fourier Transform Algorithms (see[9], [10]). The WFTA isadually not
used in this program but the padkage includes optimized routines for the transform.

A general division approach which enables an arbitrary modulus was used in the 32-bit core
version of the program. Unlike the 386 or 486, the Pentium has a relatively fast FPU in which
the modulo reduction can be done more dfedively than in the integer unit. Sincethe division
is always done by a mnstant, it can be replaced with multiplying by the inverse of the divisor.
Also the FPU registers have internally 64-bit predsion, which makes this £heme possble.
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Now if we want the remainder of a times b divided by m the procedure is as follows:

Multiply a-b.

Store the result in atemporary register.

Multiply by 1/m (precdculated).

Takethe integer part.

Multiply by m.

Subtrad from the temporary result stored in step 2

ogakhwbdrE

Thetrickiest part is 2ep 4. The x87 series coprocesrs have a“round to integer” instruction,
which is very slow. When the result is known to be in a suitable range (that is below 2°%, which
isnow the cae, sincea and b are lessthan 2°%) the result can be cdculated by first adding 2*°
to the result and then subtradting 2*°. This smply makes the fractional bits to be shifted out,
since the mantissa's width is 64 bits. The procesr's rounding mode must be first set to
truncation so that the fradional bits are smply discarded.

A guestion that arises now isthat can round-off errors cause the result to be incorred. For
example, when cdculating with afinite wordlength cdculator first 1/3<0.333and then
multiplying 30.333<0.999 and taking the integer part, one doesnt get 1 as expeded but 0
instead. It's easly seen that this cannot happen in the method used. First, mis aways prime.
Seond, a and b are lessthan m (and nonnegative). For the result a-b, when multiplied by 1/m,
to produce adedmal expansion like 0.999... the product a-b should be divisible by m. Thisis
obvioudly not possble, sncemis prime. So there will always be arandom enough fracional
part for the method to work.

Using the FPU the modular multiplication takes about 33 clock cycles on the Pentium whereas
using the integer unit it would take aout 52 clock cycles.

Also the Pentium's FPU can start one floating-point instruction ead clock cycle, but most
instructions have alatency of three dock cycles. Since dl the steps 1. — 6. above ae
dependent on ead other, it's possble to perform threeindependent modular multiplicationsin
parallel using about as much time & one modular multiplication would take.

Also the Pentium can exeaute floating-point code and integer code in parallel. In some parts of
the aode where modular multiplications cant be overlapped it's possble to perform for
example modular addition in the integer unit and modular multiplication in the FPU at the
same time. This makes ome parts of the code dmost twice & fast.

The Pentium Pro/11/111 /Celeron series processors perform very well with the Pentium spedfic
optimizations implemented in apfloat. Although the P6 series processors use speaulative
exeaution, the exeaution units themselves are achitedurally very similar to those in the
original Pentium. The raw integer and floating-point processng power is quite smilar to the
Pentium, overal performance per clock cycle being dightly higher because integer, floating-
point and memory instructions can all be exeauted at the same time (the original Pentium can
exeaute atotal maximum of two instructions per clock cycle).

It isagood question if some P6 spedfic feaures could be used to develop a more dficient
FNT algorithm. The P6 has a more dficient and fully pipelined integer multiplication unit, for
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example. The Pentium spedfic version already avoids unpredictable mnditional branches, and
using the new conditional move instructions appea to bring no noticedle performance
improvement over the aurrent code. Also changing the nested loopsinthe FNT to asingle
loop, to avoid mispredicted branches, seems to have no significant effed. Currently, the
Pentium spedfic versions of apfloat should always be used with Pentium Pro/11/111 /Celeron
Proces9ors.

7.1.2 Modular Addition and Subtradion

Addition and subtradion are dso extensively used in the Number Theoretic Transforms. Since
the cdculations are done modulo the modulus, an intuitively appeding scheme for addition is
to add the operands, then compare the result to the modulus and if the result is not lessthan
the modulus, subtraa the modulus from the result. This would seem to require a onditional
jump: if the result is lessthan the modulus, jump past the next instruction, which would
subtrad the modulus from the resullt.

Most modern procesors have some kind of a branch prediction system, which predicts
whether the conditional branch will be taken or not and the following instructions are fetched
from the predicted addressinto the pipeline. Thislogic is usually based on how the branch
behaved before. In aloop for example, the branch is always taken and thus it is not very
difficult to guessthat the branch will also be taken the next time. Processor manufadurers
often report that the branch prediction logic is corred more than 95% of time. This might very
well be true, since most code on average is loops or other parts of code which is exeauted the
same way over and over again. However, in the Number Theoretic Transform the conditional
branch is totally random, since the numbers tend to be totally random and 50% of time the
branch is taken and 50% of time it's not. Thus the branch prediction logic will be wrong about
50% of time. Most procesrs that have abranch prediction unit behave very badly when the
branch prediction logic iswrong. It can take ten clock cyclesto clea the whole pipeline and
fetch new instructions from the @rred address Thus it would make sense to avoid a random
conditional jump at all costs.

Processors that were designed to be superpipelined (like the DEC Alpha series) have
conditional move ingtructions that eliminate this kind of situations where the pipeline is bound
to stall. Sincethe compiler optimizes the cde to use these instructions, the problem
mentioned above is obvioudy avoided. However older processor designs, like the Intel x86
series (except the Pentium Pro and Pentium I1/111) , dont have this kind of instructions. The
modulo cadculation can be done without branching, but it takes afew extra instructions. The
procedure for modular addition on the x86 procesrsis:

1. Addthe operands.

2. Compare the result with the modulus. If the result is greaer than or equal to the modulus,
the cary flag is =t.

3. Subtrad the cary flag from zero. Now the result is zero if the result of the addition was
lessthan the modulus, otherwise the binary representation is all ones.

4. Logicd and the result from step 3with the modulus. The result isthe modulus if the result
of the aldition was not lessthan the modulus, otherwise ze&o.

5. Subtrad the result of step 4 from the result of the aldition.
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For modular subtradion the procedure is smilar, but the cary flag is automaticdly set if the
result of the subtradion is lessthan zero and the modulus (or zero) is added to the result of
the subtradion.

The operations above ae highly dependent on ead other. Sincethe Pentium exeautes two
independent instructions on ead clock cycle, the ade can be made aout twice a fast when
modular addition and subtradion are cdculated in parallel. Thisis awaysthe caeinthe
Number Theoretic Transforms.

7.1.3 A Note for Pentium and “ Pentium” Users

Please note that the assembler optimization for the Pentium processor isredly done
exclusively for the genuine Pentium. There ae many Pentium (or 586) clone processors out
there (NexGen, Cyrix, AMD etc.) which may behave totally differently from the Pentium.
Apfloat's assembler optimization uses the Pentium's instruction pairing abili ty as effedively as
possble. The wde might be far lessefficient on another procesor. Also most of the done
586s have adower floating-point unit than the Pentium (and possbly a faster integer
multiplication unit), so it's highly recommended to also test the 486 version of the program
and seewhich one runs faster if you have anon-Intel 586686whatever processor.

7.2 Hardware without a Double-Width Multiplier

Doing modular multiplication and espedally the Chinese Remainder Theorem effedively
essentially requires hardware cgpable of doing double-width integer multiplication (e.g. a
multiplier that produces the full 64-bit product of two 32-bit integers). Since standard C gives
no smple tools to do this, the obvious lution would be to use assembler. When a general
implementation in C isrequired, there is a workaround, however.

The standard multiplication operator gives trivially the lower word of the result of the
multiplication. Acquiring the upper word is a bit trickier. Now, the floating-point unit of the
computer always cdculates with the most significant bits of the numbers used. So the upper
word of the product can be cdculated easily by converting the operandi to doubles,
multiplying them, subtracing the lower word of the product (from the integer multiplication),
multiplying by 27 and converting to an integer. Note that it's necessary to subtract the lower
word of the product from the product, sincewe dont know how the computer will round the
values used. If it truncaes, it's not necessary. Most computers round to the neaest value,
however, so if dmogt al of the lowest bits of the product are ones, the resulting upper word
might be too big (sincethe fradional one bits dont get truncated, but rounded upwvards). An
even better solution isto only subtrad the most significant bit of the lower word of the
product. The round-off problem can't happen if it's zero, so thisway we avoid subtrading too
much from the product. Some mmputers am to round numbers very unpredictably
sometimes.

Since most modern computers have relatively fast floating-point units, this £heme can be
quite fast. The integer and floating-point code can even be exeauted in parallel in some cases.
The only bottlenedk is converting integers to doubles and vice versa.
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When suitable moduli are dhosen, double-width multiplication can be quite well avoided in
modular multiplicaion. Sincewere only interested in the remainder (which fitsin, say, 32
bits), it would make sense to only use the least significant 32 bits in the whole operation. We
can get the lower 32 bits of the product from smple integer multiplication. Then we can
approximate the quotient of the product divided by the modulus by converting the operandi to
doubles and multiplying by the inverse of the modulus (converted to a double). The inverse of
the modulus should be dlightly rounded down. Now subtrad the modulus (integer) times the
approximated guotient (converted to an integer) from the product, using only the lowest 32
bits. Sincethe quotient was approximated and possbly one too small, the result might be
about twice the modulus. So when the moduli are chosen to be lessthan 2°*, we can till get
the remainder, sincethe result now fitsin 32 bits acarately. Simply subtrad the modulus once
if necessary.

7.3 Vector and Parallel Computers

This program is not redly designed to be used in vedor or parallel (super)computers. It's
designed for RISC processors and hierarchicd cade-based memory systems, typicaly
personal computers and workstations. Performance on vedor or parallel computers will
probably be dose to scdar computers.

A multithreaded version of the NTT is available for some platforms. This constitutes only a
part of the program exeaution time, so it will not enable perfea scdability on SMP (symmetric
multiprocessng) systems. However, it should be possble (but not very easy) to implement the
CRT, addition/subtradion etc. on avedor or paralel computer. If disk-based numbers are
used, the disk transfer speed will probably remain the bottlened, even if you have avery high
performance disk system, such asa RAID farm. Fed freeto experiment.
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Appendix A: Number Theoretic Transforms in Convolution

Thistext assumes the reader has some basic knowledge about elementary number theory, like
modulo arithmetic. For a good textbook on the subject read [1].

The Discrete Fourier Transform (DFT) of the N-long sequence x(n) is defined as
N-1
X(k) = Z x(N)w* D

For an ordinary Fourier transform, W is defined as

i

W=en 2

wherei isthe imaginary unit. However, at present, we will not assume anything about W. The
inverse transformis

)= 3 Xt ©

At present we are not interested in the transform itself, but a convolution. The cyclic
convolution c(n) of two sequences a(n) and b(n) of length N is defined as

c(n) =a(n)* b(n) = NZ‘_ja(k)b(n -Kk) (4)

assuming that a(n) and b(n) are treated as cyclic sequences, that is b(—1)=b(N-1) etc. Now
the convolution can be computed more efficiently in the Fourier domain. The convolution
corresponds to linear (element by element) multiplication in the Fourier domain. That is, to
calculate the convolution, first take the Fourier transforms of the sequences to be convolved,
multiply the corresponding elements in the transforms and then take the inverse transform.

The Discrete Fourier transform (1) and itsinverse (3) can be calculated using the Fast Fourier
Transform in about NlogN operations instead of the N° operations that the direct calculation
would require. If A(k) and B(k) are the Fourier transforms of the sequences a(n) and b(n), the
Fourier transform C(k) of the convolution sequence c(n) is

C(k) = A(k)B(k) (5)

and c(n) can then be calculated with the inverse transform. Now to see what requirements the
number W must meet in general for the cyclic convolution to work, substitute (1) to (5):

C(k) = A(k)B(k) = Z a(iyw" Z_Ob(j)w"k (6)

then use (3):
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=2 NZ:C(k)w-k"

1 N-1 N-1

=N ZOW k“Z OWA Z B(j)w* (7

= ; AG) ;B(j)ﬁ gowkﬁﬂ—m

Now thisis obviously equal to equation (4) if and only if
N-1
S WA = NG+ =) ®)

where ) is the discrete delta function (1 when n=0 and 0 otherwise). So the sum in (8)
would be N when j=n— and 0 otherwise. Now let's look at

N-1 )
zW’k )
Thisis obviously N when j=0. Otherwise multiply it by (1—W), the result should be zeo:

N-1

(1_Wj) ijk =W?° +Wj +W2j +---+Wj(N_l)

—Wi -2 - _Wj(N—l) _WJN (10)
=1-W™ =0

So W"=1. Sincej was arbitrary (in fad j=0 (mod N)), obviously W must be an Nth root of
unity (also Wisnot 1 in general). In the “normal” Fourier transform thisis of coursetrue ain
equation (2). If Wisin genera an integer or some rational or red number, this criterion clealy
cannot be satisfied. However, a suitable W can be found in the field of integers modulo p when
p is aprime of the form p=kN+1 where k is an integer and N is the transform length. In this
case the Fourier Transform is cdled a Number Theoretic Transform (NTT). For amore
thorough discusson about why p must be kN+1 refer to appendix B.

So Number Theoretic Transforms are just ordinary Discrete Fourier Transforms but they are
done in adifferent number field. Most of the formulae and algorithms that apply for the DFT
also apply for NTTs. The most interesting property is probably that the NTT can be cdculated
using a“fast” algorithm (Fast Number Theoretic Transform, FNT), like the DFT can be
cdculated using the Fast Fourier Transform (FFT). For arigorous development of the FFT
algorithm(s), see[7]. Just remember that W is now an integer and all the cdculations are done
modulo p. For a due @out FFT implementation, see[3].

Number Theoretic Transforms have several advantages over the usual complex Fourier
Transforms:

- Thetransform is obvioudy red, so when transforming/convolving red data no spedal tricks
are required to avoid using double the space ad work needed.



24

- Since d used numbers are dways integers, no round-off errors can occur. This makes
possble to transform very long sequences (like N=2"%) with standard 53-bit resolution. Also
al “twiddle fadors’ inthe FNT algorithms can be caculated efficiently using reaurrence
relations.

- The computation can be done “in parts’ and the final result recovered using the Chinese
Remainder Theorem. Thisis useful if the result overflows (the result numbers are only
cdculated modulo p). Just do the same cdculation modulo several different primes of the
suitable form and use the Chinese Remainder Theorem on the results. (For an explanation
of the Chinese Remainder Theorem and a description on the implementation see gpendix
C)

There ae dso some disadvantages:

- Thetransform itself has no use (it has no physicd meaning like the Fourier Transform
represents frequency). So Number Theoretic Transforms are mostly useful for convolution
only.

- Long integer arithmetic is dower than floating-point arithmetic on most computers.

If one happensto have a omputer with redly poor long integer multiplication/division
performance but relatively good integer addition/subtracion performance, one might want to
use an algorithm with minimum number of multiplications for the cdculation of the NTT.
These ae of course the Winograd Fourier Transform Algorithms (WFTA) ([9] and [10]). The
algorithms can be used asis, but since they involve multiplicaions by cosines and sines
(acually awaysi-sin), some dtention must be paid to what they correspond to in the number
theoretic field. A hint to thisisgivenin[13].

For example, if we want to cdculate 0s30° and i-sin30° we must have afield that has a 12th
root of unity (since 30° is one twelfth of the full circle). So p=k-12+1. Now let W be al2th
root of unity in the field of integers modulo p. If we would be in the field of complex numbers,
W would obviously be €7°=c0s30°+i-sin30°. So we might asume that in the number theoretic
field also must hold W=cos30°+i-sin30°. Also it would make sense that always cos™+sin"x=1
or in other words cos™—(i-sinx)’=1. Note that there doesnt necessarily exist a fourth root of
unity (corresponding to i) in the number theoretic field.

Now if Wisthe Nth root of unity and

Wicos%[ﬂsinz—n

N
(11)
co§2—n—HSinz—ng 21
N O N O
then (after smple dgebraic manipulation)
2
cosz—n a W' T !
A @
isin— = w
N 2w

Trying these formulae out with the WFTA agorithms one can seethat they redly work.



25

Since most computers today are cate-based systems the FNTs (like ay Fourier Transforms)
can be cdculated more dficiently with the “four-step” algorithm [4]. For a short proof see
appendix D. Doing the transform in shorter blocks results in high data locdity and thus a
better cade hit rate.
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Appendix B: Primitive Roots

For amore rigorous and general discusson, seefor example [2].

Thistext concentrates on primitive roots of primes only for reasons of simplicity. From
elementary number theory we know that for all nonzero integers a, when p is prime

a”" =1(mod p) (13
(From now on we just might suppose that the modulus p is prime). For al prime moduli there
exists a primitive root r (acdualy many). A primitive root r is an integer that

when the integer x goes from 1 to p—1,
then r (mod p) goes through all the numbers 1...(p—1) in some order.

The order of an integer a is the smallest positive integer x for which a’=1 (mod p). So the
order of a primitive root (modulo a prime p) is p—1.

Sincea” =1 (mod p) aways, it is obvious that if the order of a is lessthan p-1, the order
should dvide p—1. To seethis, noticethat when you start multiplying 1-a-a-a-... (mod p) when
the result of the multiplication is 1, the sequence starts over again. And when you have done
the multiplicaion p—1times, the result must be 1. So the order of a must divide p—1.

To test whether a number a is a primitive root modulo p, we want to know whether the order
of aisp—1or less Thefirst thing to do isto fador p—1. This can be done dfedively (when
p<2*%) with a precdculated table of primes lessthan 2™ and smple trial division. Then if

apT_lil(mod 0)) (14)

for al facorsf of p—1, aisa primitive root modulo p. Note that one only hasto do the test for
all prime fadors of p—1. There's no nead to chedk if a to any smaller power is 1, sinceraising
the 1 to some higher power is gill 1, so one can just chedk the highest possble powers.

There ae lots of primitive roots for all primes, so finding one by diredly testing numbers
should not be too difficult. An easy approach isto test prime numbersa=2, 3,5, 7, ...

An example:

Let p=2*-2°+1. Then p is of the form kN+1, that is needed for doing (Fast) Number
Theoretic Transforms up to length N=2°°. The factorization of p-1is p-1=2°°3%5.7-13.

Now start testing numbersa=2, 3, 5, 7, ... and seeif
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aDT_laél(mOd p)
apT_laﬂ(mod p)
a’s 1(modp) (15)
ap7_lae1(mod p)

p-1
a1 =1(modp)

(thefirst a for which thisoccursisa=19).

A root W of order N, that is, W'=1 (mod p), but W'=1 (mod p) when 0<n<N, can be
caculated with W=r* (mod p), when p=kN+1. So W'=r""=r""=1 (mod p).

Note that now W"? = -1 (mod p), so the decomposition of the Number Theoretic Transform
to a(radix-2) Fast Number Theoretic Transform redly works (just like the FFT). To seethis,
note that W' = 1 (mod p), and so W*? = +1 or —1 (mod p). But W"? can't be 1, sincethen W
would be aroot of order N/2, and it isnt.
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Appendix C: The Chinese Remainder Theorem
Thisis basicdly the Chinese Remainder Theorem algorithm from [6].

The Chinese Remainder Theorem (CRT) gives the answer to the problem:
Find the integer x that satisfies al the n equations smultaneoudly:

x= r,(modp,)

x= r,(modp,)

' (16)
x= r,(modp,)
X=r,(modp,)

We will assume here (for pradicad purposes) that the moduli p« are different primes. Then
there exists a unique solution x modulo p1-pz-...-pn. The solution can be found with the
following algorithm:

Let P=p1-pz-....pn.
Let the numbers T:...Tn be defined so that for ead Tk (k=1, ...,n)

~T,=1(modp,) a7

k

that is, Tk is the multiplicative inverse of P/px (mod pk). The inverse of a (mod p) can be found
for example by cadculating a® (mod p). Note that a-a” *=a”'=1 (mod p).

Then the solution is

P P P
—riTi+—r2To+...+—r,Ta(ModP) (18)
1 P2 P
The good thing isthat you can cdculate the fadors (P/pk)- Tk beforehand, and then to get x for
different ry, you only need to do smple multiplications and additions (supposing that the
primes px remain the same).

X

When using the CRT in a Number Theoretic Transform, the dgorithm can be implemented
very efficiently using only single-predsion arithmetic when r<px for all k. Now cdculate first
P/p« and T for all k (note that this only needs to be done once). Then cdculate

Y =1, (modp,) (19
for al k. Now the solution is
P P

x=2y+ Py v+ P2y (modp) (20)
pl p2 pn



Note that multiplying a multiprecision number P/px with a single-precision number only
requires single-precision arithmetic (supposing your hardware does double-width
multiplication). Also the reduction modulo P in the final calculation obvioudly only needs
simple compares and subtractions, since (P/Px)y« is aways less than P.

29



30

Appendix D: The “Four-Step” FFT Algorithm

The Discrete Fourier transform X(k) of the data x(j)
N-1
X(k) = ZWJKX(J') (21)
J:

can be computed more dfedively in computers with a cade memory with the “four step”
algorithm. Assume that the transform length N can be fadored to N:N.. Now trea the data
like it was dored in a NixN2 matrix. Assume that the datais gored in the matrix the “C” way,
that is the matrix element Ajk (row j, column k) is gored at linea memory addressjNz+k.

The dgorithm is as follows:

1. Transform ead column, that is do N transforms of length Nu.

2. Multiply ead matrix element Ajx by W the sign being the sign of the transform and W the
Nth root of unity of the number field used.

3. Transpose the matrix.

4. Transform ead column, that is do Ni transforms of length N2.

Now the proof that the dgorithm acually works:

From now on welll only use linea addresses of the data.

Step 1

In column k2 of the matrix atransform of length N1 is performed. So the gpropriate Nith root
of unity for that transform is W". So the dement in row ki and column k. becmes

Nl ‘
X (K N2+ko) = ZOWJIKINZX( 1N, +k,) (22
=
Step 2
Multiplication.
X2 (ki N2+ K2) =W 2 X1 (ky N2+ k) (23
Step 3.
Transposition.
X3(k2 N1+ ki) = X2(kiN2+k) (24)
Step 4.

Again in column ki of the matrix a transform of length N is performed. So the gpropriate
N:th root of unity for that transform is W™



Nz_l

Xa(kaNi+ky) = ZOWJ'zklexs(ijl+ ko)
1=

Substituting Xs3(j2N1+kz) from step 3yields (noting that now ko=j2)

N 2_1

= ZOszkzNIX2(k1N2+ i)
Irs

Again subgtituting Xz(kiNz+j1) from step 2 yields

N 2_1

= ZOszkle+j2kl X1(kiN2+ Jz)
=

Finally substituting Xi(kiN2+j1) from step 1yields

N,—1 N1

= ZWjZkZNlﬂZkl ZOleklNz X(jyN2+ Jz)
P 1=
which is by changing the order of the summetion
N;=1N,1

) ZO ZbVVjlklNerjzkzl\mjzklX(jlNz"' )
1,70 J,=

Note that

(kaN1+k)(J;N2+J,) = jikaNaN2+ jikaNa+ j,kaNi+ j,o ks
and since W*:=\W'=1 also W*"":=1 and thus the final result can be presented as

Nl_l N 2_1

Xa(koNytky) = WkNHDN1) (N + )
a(ka N1 leo,zzo No+ i,

(29

(26)

(27)

(28)

(29

(30

(31

31

Now thisis exadly the same & the original Discrete Fourier Transform, when we note that the
summmetion is just the same, only fadored to two parts which comes from facoring N to N1No.

Simply mark k with kaN1+k: and note that j going from 0 to N-1 is equivalent to jiNa+j2 with j1
going from 0 to Ni—1 and j2 going from O to N>—1 for ead j1 in the inner loop. So X(K) is

equivalent to Xa(kaN1+kz). Il

[4] has amore thorough discusson about the subjed. Some ideas that were used in this
program are for example the “six-step” method, very similar to the “four-step” method:

Transpose the matrix.
Transform the rows.
Multiply by W~
Transpose the matrix.
Transform the rows.
Transpose the matrix.

ok wbdrE

This method has the alvantage that the short transforms are done in linea memory blocks.
Thisis arequirement for any cade-based memory system to function effedively. The matrix
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transposition is a very fast operation and can be performed in placewhen N:=N. or N>=2N:
and the aray fitsin memory. When doing convolution only, one can save the last transposition
in the forward transform and the first transposition in the inverse transform. [4] describesthe
algorithm carefully.

A disk-based “two-pass’ transform algorithm described in [4] was also implemented. It
requires only two passes through the data set and is theoreticdly very effedive. The
implementation avoids transposing the whole matrix when doing convolution. Thisis
acomplished by first reading N1xb blocks into memory so that the blocks just fit in memory.
The block is transposed, ead row is transformed, the block then transposed again and written
bad to disk. After the wlumns the rows are transformed. In the inverse transform the order is
reverse.

However, the “two-pass’ algorithm is required only when the whole aray cant fit in the
memory and thus the transform length will be very big. In pradicethe dgorithm is $ sow for
disk storage that it's useless (Actually the dgorithm is not intended for disk storage & all but
only slower hierarchicd memory with seek times and transfer rates more typicd for memory
chips than disk. Thisis mentioned in [4].)
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Appendix E: Algorithms for it

These ae probably the most efficient algorithms for cdculating rt known to man. Proofs and
convergence analysis can be found in [8]. All cdculations must be done with the desired
predsion of the final result.

The Borweins quartic dgorithm:
Yo=v2-1
2, =6-4/2
_(-yy -1 (32

Ak+1 — Ak (1+ yk+1)4 - 22k+3 yk+1(1+ yk+1+ yi+]_)

Now ax approaches 1/rt quarticdly, that isthe number of corred digits approximately
guadruples in ead iteration.

The GaussLegendre dgorithm:

1
4 (33
At = ax t b

2

b =+ ak bk

tan =t — 21 (ax - ak+1)2

1t is then approximated by (ax+bx)*/(4ty). The dgorithm has quadratic convergencethat is the
number of correa digits approximately doubles ead iteration.

The Chudnovskys agorithm:
b |
1_ 12 z(_l)k ((Zk). 13591409%5451k4013& (34)
T 640320 & (k)" (3K!) (640320)

The series must be cdculated using the binary splitting algorithm to be dficient. A good
explanation of the binary splitting algorithm can be found for example in [14].
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