
apfloat

A C++ High Performance Arbitrary Precision Arithmetic Package

Version 2.32

April 17th, 2001

Mikko Tommila
E-mail: Mikko.Tommila@iki.fi

Abstract

Apfloat is a C++ arbitrary precision arithmetic package. Multiplications are done using Fast
Fourier Transforms for O(n log n) complexity. The transforms are done as Number Theoretic
Transforms to avoid round-off problems. Three different moduli are used for optimal memory
usage. The final result is achieved using the Chinese Remainder Theorem. The algorithms are
optimized for very high precision (more than 100 000 digits). The package is written to be
easily portable, but also includes assembler optimization in critical parts for various processors
for maximum performance. The software is released as freeware and is free for non-
commercial use.

This document and the software are located at http://www.iki.fi/~mtommila/apfloat/

2

Table of Contents

Legal Notice .. 3

1. Introduction ... 3

2. Compiling the Library... 4

3. Using Apfloats ... 4
3.1 Constructors .. 4
3.2 Arithmetic Operations and Functions ... 5
3.3 Member Functions ... 6
3.4 Complex Numbers ... 7
3.5 Integers ... 7
3.6 Rational numbers ... 8
3.7 Things to Note... 9
3.8 Using Some Other Base than Base 10 ... 10

4. Classes and Data Structures... 11

5. Adjusting System Parameters .. 13

6. Multiplication of Very Large Numbers .. 14

7. Performance Considerations .. 15
7.1 Assembler Optimization .. 16

7.1.1 Modular Multiplication.. 17
7.1.2 Modular Addition and Subtraction... 19
7.1.3 A Note for Pentium and “Pentium” Users .. 20

7.2 Hardware without a Double-Width Multiplier ... 20
7.3 Vector and Parallel Computers.. 21

Appendix A: Number Theoretic Transforms in Convolution .. 22

Appendix B: Primitive Roots... 26

Appendix C: The Chinese Remainder Theorem.. 28

Appendix D: The “Four-Step” FFT Algorithm... 30

Appendix E: Algorithms for π ... 33

References .. 34

Revision History.. 35

Legal Notice

This program (the apfloat source code and documentation) is freeware. This means that you
can freely use, distribute, modify and compile it, but you can't sell it or any part of it. Basically
you can do anything with it, but the program or any part of it will always be free. That is you
can't charge money or other valuables or services for it.

Although you can use this program freely, it would perhaps be considered to be good manners
to give the original author credit for his work, if this program is ever used for anything useful
or remarkable.

The author takes no responsibility whatsoever for any damage or harm that could result from
using this program. The program has been thoroughly tested, so using it should be fairly safe.
However, executing it as root is perhaps not a very good idea.

Once more (a standard disclaimer):

THIS SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PRODUCT IS WITH YOU. SHOULD THE PRODUCT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

IN NO EVENT WILL MIKKO TOMMILA, THE AUTHOR OF THIS SOFTWARE, OR
ANY OTHER PARTY WHO MAY HAVE REDISTRIBUTED THE PRODUCT AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PRODUCT (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PRODUCT TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

1. Introduction

The original idea for this program got started from the author's personal interest in calculating
π to as many decimal digits as possible as fast as possible. It's difficult to imagine any (other)
reasonable use for this program. Calculations like this can of course be used for example to
test a computer system's reliability since a single error in one arithmetic instruction will render
the rest of the calculated digits totally wrong. There could be a bug in this program also.

Use of this package has been made as simple as possible so that the user's need for special
customization and knowledge of the inner structure of the program is minimized. Despite the

4

simplicity the program is nearly as efficient as what would be achieved with customized tricky
programming.

The author is aware that there exist several other similar multiprecision packages (like [11]
and [12]). This program was written because of the author's personal interest in the subject.

All comments about the program and especially bug reports should be sent by e-mail to the
author (Mikko.Tommila@iki.fi).

2. Compiling the Library

First unpack the compressed source file and the appropriate makefile package for your
compiler: djgpp, bcc32, vc, Linux or general UNIX gcc, or just any general C++ compiler (the
makefile is for gcc, so you may want to change that). Then simply run make lib.

If you use a UNIX system, you may need to modify the makefile to tell the compiler for
example to enable integer multiplication and division instructions or to set long ints to be 64-
bit (if you use the 64-bit version). Simply add the required options to the OPTS = line in the
makefile. On most platforms, however, you should be able to compile the code without any
changes. The file readme.1st has more troubleshooting hints.

3. Using Apfloats

Using the apfloat library is simple. After compiling the library you only need the header file
apfloat.h plus the compiled library. In each file you plan to use apfloats in you should always
#include "apfloat.h". Then simply write a program like

#include <iostream.h>
#include "apfloat.h"

int main(void)
{
 apfloat x = 2;

 x.prec(1000);
 cout << sqrt(x) << endl;

 return 0;
}

and compile it with the apfloat library (apfloat.a or apfloat.lib) you created before.

3.1 Constructors

You can construct an apfloat from an integer, a double, a character string or another apfloat.
Integers have infinite precision by default (actually 0x7FFFFFFF base units in a 32-bit address
space), doubles about 16 decimal digits and strings the precision of the string length. One base
unit is 109 or 9 decimal digits in 32-bit implementations, 19 digits in 64-bit implementations
and 15 or 7 digits in the floating-point implementations (doubles or floats correspondingly).
For example:

apfloat a = 5; // Infinite precision
apfloat b = 5.0; // Precision is about 16 decimals
apfloat c = "123.456789012345678901234567890"; // About 30 decimals

The constructors have the precision as the second optional argument. For example:

apfloat x = apfloat(5, 1000); // Precision is 1000 digits
apfloat y = apfloat(1.5, 2000); // Precision is 2000 digits
apfloat z = apfloat("123", 3000); // Precision is 3000 digits

3.2 Arithmetic Operations and Functions

The standard arithmetic operations

+
-
*
/
+=
-=
*=
/=
++
--

are overloaded for the apfloat class. Also the following functions are overloaded:

invroot(x, n) // Inverse nth root (using Newton's iteration)
root(x, n) // Integer nth root (inverse of invroot)
sqrt(x) // Square root (optimized)
cbrt(x) // Cube root (optimized)
pow(x, n) // Integer power
floor(x) // Floor function
ceil(x) // Ceiling function
abs(x) // Absolute value
modf(x, *i) // Splits to integer and fractional parts
fmod(x, y) // x modulo y
agm(x, y) // Arithmetic-geometric mean
log(x) // Natural logarithm
exp(x) // Exponential function
pow(x, y) // Arbitrary power xy

sin(x) // Sine (included in apcplx.h)
cos(x) // Cosine (included in apcplx.h)
tan(x) // Tangent (included in apcplx.h)
asin(x) // Inverse sine (included in apcplx.h)
acos(x) // Inverse cosine (included in apcplx.h)
atan(x) // Inverse tangent (included in apcplx.h)
atan2(x, y) // Angle of (x, y) on the complex plane (in apcplx.h)
sinh(x) // Hyperbolic sine
cosh(x) // Hyperbolic cosine
tanh(x) // Hyperbolic tangent
asinh(x) // Inverse hyperbolic sine
acosh(x) // Inverse hyperbolic cosine
atanh(x) // Inverse hyperbolic tangent

Division uses the invroot function.

There is a function pi(prec) which gives π calculated to prec digits.

6

There are also stream input and output operators, so you can for example

apfloat x = "3.1415926535";
cout << x;

This outputs the number in a floating-point style number, like

0.0000000031415926535e9

If you want a prettier output (no exponent, all the digits), there is a manipulator:

cout << pretty << x;

will output

3.1415926535

3.3 Member Functions

Apfloats have the following member functions:

int sign(void);
void sign(int newsign);
long exp(void);
void exp(long newexp);
size_t prec(void);
void prec(size_t newprec);
int location(void);
void location(int newlocation);
void unique(void);
void swapto(char *filename);
void swapfrom(char *filename);

The sign() function returns the sign of the number (1, 0, or –1 for positive, zero and
negative numbers correspondingly). sign(s) sets the sign to s.

exp() correspondingly returns and sets the exponent. Note that the exponent can only be set
in multiples of the number of digits in one base unit.

prec() returns and sets the precision. There is a constant named INFINITE, which can also
be used. It's the precision integers are set to by default.

location() returns and sets the location of the data in the mantissa of the number. It can
have one of the constant values defined in apfloat.h: MEMORY or DISK. There's no reason to
use this function and moving too big numbers to memory can cause the program to abort or
crash unexpectedly.

unique() ensures that the data of the number is a unique copy. Due to the pointer structure of
the program more than one number can point to the same data. There should be no reason to
ever use this function.

swapto(char *filename) "swaps" the number to the specified file. That is, the number is
saved to disk and deleted from your program (the number becomes uninitialized). The function
is implemented so that if the number already resides on disk, this function does very little (just
appends the number's member fields to the data of the mantissa) and is very efficient. This is
an useful function for saving numbers to disk for e.g. transferring them between programs. It
is far more efficient than printing and inputting the number via file I/O streams.

swapfrom(char *filename) "swaps" the number from the specified file, that is loads it from
a file where a number was saved previously with swapto(). The specified file is essentially
deleted from disk. Again, if the number is very big and should by default reside on disk, this
function is very fast.

Mostly you will only need the prec() function.

3.4 Complex Numbers

Complex arithmetic can be done with the apcomplex data type. The necessary declarations
are in the file apcplx.h. All the apcomplex functions are compiled in the apfloat library.

Apcomplex numbers relate to apfloats just like standard C++ complex numbers relate to
doubles. An apcomplex number is constructed from two apfloats: the real part and the
imaginary part. For example:

apcomplex z = apcomplex(0, "1e1000");

All the mathematical functions are also overloaded for the apcomplex type, as are the stream
input and output operators. Also the standard C++ complex manipulators (real, imag, conj,
norm and arg) and the polar constructor are overloaded.

The real and imaginary parts of an apcomplex number can be directly accessed as the members
re and im. For example:

z.im.prec(100);

The apcomplex class also has a prec() member function, which returns the precision of the
number. The precision cannot be set this way, it must be set explicitly via the members re and
im.

Note that in order to use the real trigonometric functions (sin, cos, tan and their inverses), you
must include apcplx.h, since these functions are calculated via complex functions.

There are some examples of complex arithmetic in the file cplxtest.cc.

3.5 Integers

Integer arithmetic can be done with the apint data type. The necessary declarations are in
the file apint.h. All the apint functions are compiled in the apfloat library.

8

Apint numbers relate to apfloats just like standard C ints relate to doubles. An apint number is
an arbitrary precision integer. For example:

apint i = 100;

All the arithmetical operations are overloaded for the apint type, including the modulo % and
%= operators and the shifting operators (<< and >>). Also the stream input and output
operators are overloaded. Apints are always output with full precision (the pretty modifier
is used for the output). Arithmetical operators with other arbitrary precision data types are
also overloaded. Conversion from apint to apfloat should happen automatically when
necessary. The precision of an arbitrary precision integer is naturally always infinite and it
cannot be changed. Also the arithmetic with apints works with exact precision always. This is
obviously required for integer division and modulus.

The following mathematical functions are implemented for the apint class:

pow(x, n) // Integer power
abs(x) // Absolute value
div(x, y) // Splits to quotient and remainder, returns apdiv_t
gcd(x, y) // Greatest common divisor
lcm(x, y) // Least common multiple
powmod(x, y, m) // Integer power modulo a modulus

There are some examples of arbitrary precision integer arithmetic in the file inttest.cc.

3.6 Rational numbers

Arbitrary precision rational arithmetic can be done with the aprational data type. The
necessary declarations are in the file aprat.h. All the aprational functions are compiled in the
apfloat library.

An aprational number is constructed from two apints: the nominator and the denominator. For
example, the following code declares the rational number 2/3:

aprational r(2, 3);

All the elementary arithmetic operations are overloaded for the aprational type, as are the
stream input and output operators.

The nominator and denominator of an aprational number can be directly accessed as the
members nom and den. For example:

cout << r.nom;

As the members of the aprational class (the nominator and the denominator) are integers, both
of them have infinite precision. This can't be changed. You can get a floating-point
approximation of the rational number with the member function approx(prec), which
returns an apfloat with the desired precision prec. You can mix apint and aprational numbers
in arithmetic operations, but when you are using apfloats with aprational numbers, you should

always use explicit floating-point approximations of the rational numbers with the member
function approx().

Because rational numbers are not uniquely defined, unless the nominator and the denominator
have no common factors, this arises some questions after every arithmetic operation is done.
Should the nominator and denominator be reduced so that they have no common factors? As
this can be quite tedious and sometimes is not necessary, there is a static member variable
called autoreduce. By default it is set to true, which means that after every operation the
nominator and denominator are reduced to the smallest possible numbers. If it is set to false,
this reduction is not done and the nominator and denominator can grow unnecessarily big.
This can speed up things, if it is known that the nominator and denominator will have no
significantly large common factors. You can still manually reduce the rational number to the
smallest possible numerator and denominator by calling the member function reduce(). The
reduction simply first calculates the greatest common divisor of the nominator and
denominator and then divides the nominator and denominator by the gcd. Because this can be
highly inefficient, it is recommended to always set the autoreduce parameter to false if it is
feasible.

The function pow(x, n) is overloaded for the aprational class (for the parameter x).

There are some examples of rational arithmetic in the file rattest.cc.

3.7 Things to Note

- When the numbers are stored on disk, the program will create temporary files in the current
directory. The files are named xxxxxxxx.ap, where xxxxxxxx is a number starting from
00000000. Naturally you should have permission to write files in the current directory.

- Remember to set integers to a finite precision before doing arithmetic on them which will
create an infinite decimal expansion (like sqrt(2) or 2/3). For example

apfloat x = 2;
cout << sqrt(x);

will exhaust virtual memory or result in a crash. Instead define the precision in the
constructor:

apfloat x = apfloat(2, 1000);
cout << sqrt(x);

or afterwards, like

apfloat x = 2;
x.prec(1000);
cout << sqrt(x);

- It probably doesn't make much sense to construct high-precision apfloats from numbers
with infinite binary expansions using the constructor from a double. For example

apfloat x = apfloat(1.3, 1000);

10

will be correct only to at most 16 digits, not 1000. This is because the number 1.3 cannot
be presented exactly in base two with a finite number of bits (which is the case when you
use a double). Depending on your compiler there might be an error of about 10-16 with any
doubles (like 0.5). Instead you should use

apfloat x = apfloat("1.3", 1000);

- The compiler will probably give a lot of warnings when you compile the code. This is due
to the structure of the apfloats. Since an apfloat only contains a pointer to the actual data
and only pointers are exchanged in constructors and assignment operations, temporary
objects will be used in suspicious constructors. For example

apfloat x = apfloat(2, 1000);
cout << sqrt(x) << endl;

will use a temporary apfloat. The first line constructs an apfloat(2, 1000). On the
second line it's copied to the parameter that goes to sqrt(). If all the data was copied a lot
of time and space would be wasted. Only a link to the actual data is added and then later
removed at the function return, so much time is saved. A temporary object sqrt(x) is
created. It is then output to cout. Then the temporary object is destroyed. There is nothing
wrong with this, but you'll get a warning.

- This package is designed for extreme precision. The result might have a few digits less than
you'd expect (about 10) and the last few (about 10) digits in the result might be inaccurate.
If you plan to use numbers with only a few hundred digits, use a program like PARI (it's
free and available from ftp://megrez.math.u-bordeaux.fr), or a commercial program
like Mathematica or Maple if possible.

3.8 Using Some Other Base than Base 10

If you want to do calculations in some other base than decimal (base 10) use the apbase()
function. Note that you can't change the base between calculations (or you shouldn't, since it
will result in a crash). That is, your code should delete all the apfloats crated so far before
changing the base. Thus it's a good idea to change the base in the beginning of your program
and then not change it after that. For detailed instructions refer to the file bases.txt in the
package.

4. Classes and Data Structures

apfloat

apstruct

ap

fstream

getdata()
putdata()
readydata()
cleardata()
openstream()
closestream()
resize()
relocate()
capture()
release()

fs

modint

data[]

1..n

datastruct

size : size_t
location : int
gotdata : bool
position : size_t
blocksize : size_t
fileno : int

modulus : rawtype
value : rawtype

nlinks : int
sign : int
exp : long
prec : size_t

prettyprint : bool

sign()
exp()
prec()
location()
unique()
swapfrom()
swapto()

Figure 1: Class diagram

Practically all the work the program does is done on the datastruct class. The datastruct stores
the mantissa of the number, that is all the significant digits. The data is accessed through the
getdata() and putdata() functions. The data itself can reside either in memory or on disk.

When a function wants to use the data of the mantissa, it calls getdata(position, size).
It returns a pointer to the data. If the number was located in memory, it only returns the
pointer to the beginning of the data plus the parameter position. If the number was on disk,
a buffer of size size is allocated and the data from the appropriate position in the file is read
to the buffer. Then the address of the buffer is returned. Thus the data will be accessed the
same way whether it is located in memory or on disk.

When the function is done with manipulating the data, it calls putdata(). If the number was
located in memory, putdata does nothing since the function already changed the data in the
right position. If the number is located on disk, putdata writes the data to the right file position
and frees the memory that was allocated for the buffer.

12

Correspondingly there also exist functions readydata(position, size) and
cleardata(). Readydata only readies the buffer for writing data to the position (with
putdata()), but nothing is assumed of the previous contents of the data in that position.
Cleardata just deallocates the buffer that was previously allocated with getdata() for
reading purposes only.

The datastruct class also naturally includes the data size and the location of the data.

The datastruct class includes only the raw data of the number. The apstruct class is derived
from the datastruct class. It includes all additional data about the number: sign, exponent,
precision and number of links to the data.

The apfloat class, the only part visible to the end user, only contains a pointer to an apstruct.
This way apfloats can be used effectively just like normal floating-point numbers in C++.
Every time a number is passed to a function as an argument or assigned (the = operator) to
another variable a copy is made of the number. If all the data (possibly tens of megabytes) was
copied every time, a huge amount of time and space would be wasted. This is why copying
apfloats means only that the pointer is copied and the number of links in the data is increased
by one. If the number needs to be changed (for example by changing the precision with the
prec() member function), an original copy is first created with the unique() function.
When an apfloat is destroyed, only a links is removed from the data. If the number of links to
the data is zero, then the actual data is destroyed. All arithmetic operations always create a
new (temporary) apfloat, so this method works very well (and it's completely invisible to the
user).

Some arithmetic operations, like addition, subtraction and multiplication also benefit from the
pointer structure. If the arguments (the pointers) to the operation are identical, the numbers
are known to be equal. Especially multiplication becomes squaring, which is a lot faster.

Since multiplication of apfloats (the most intensive part of the program) is done using Number
Theoretic Transforms (see appendix A), the data is stored as the modint class. Modints are
integers, but the arithmetic operations are overloaded so that the arithmetic is always done
modulo the global variable modint::modulus (or sometimes modulus). This makes coding the
transform functions very simple and intuitive, yet very effective due to inline functions. Even
assembler optimization is possible because gcc supports very flexible inline assembler
statements (see section 7).

The program also has a “bigint” data type, which is basically only used for temporary
calculations in the Chinese Remainder Theorem (see appendix B). Bigints are simply arrays of
unsigned integers. Relatively short arithmetic (like 96-bit) is fastest using bigints, since the
hardware in general directly supports them.

Sometimes really big blocks of modints need to be allocated (tens of megabytes). Most
compilers or operating systems seem to handle allocation of very big memory blocks quite
strangely. When the allocated block is freed, the memory is not actually freed, but somehow
just marked free. If a larger block is allocated right after that, the previously allocated block
cannot be re-used and almost double the necessary memory gets allocated. This will result in

either running out of memory or extreme swapping and heavily degraded performance when
running at the limits of available memory (which should be the case).

Before any operations on the apfloat class are done, certain initial functions must be
performed. These are done in the function apinit(). To automatically call this function at
the beginning of the program, and the function apdeinit() at program exit, which cleans up
the things that apinit() did, a dummy class is constructed in the file init.cc. This class,
apfloatinit, has only one instance and it is static. The constructor for this class simply calls
apinit() and the destructor calls apdeinit(). Thus at the beginning of the program, before
main() is run, the constructor for this static apfloatinit instance is of course called. After
main() has finished, the destructor for the instance is called. So, the apinit() and
apdeinit() functions are performed automatically.

All the data in the program is allocated and deallocated dynamically during run time with the
new[] and delete[] operators. However due to the memory allocation problem mentioned
above a slightly different approach was implemented. At the program start, in the function
apinit(), a memory block of maximum size (power of two or three times a power of two) is
allocated. The pointer is in the global variable workspace. It's freed at program exit, that is
when apdeinit() is called. Fortunately, C++ makes possible to overload the new[] and
delete[] operators for the modint class so that every time a block larger than the global
variable Memorytreshold (see section 5) is “allocated”, a pointer to workspace is returned.
It's never deallocated with delete[]. If the workspace is “allocated” twice, the program
aborts with an assertion failure. This should never happen, however, since normally numbers
larger than Memorytreshold are stored on disk. Only one (large) buffer at a time is allocated
in memory for intermediate computation results. Blocks smaller than Memorytreshold are
allocated normally with the rawtype's new[] and delete[] operators. This is why you
should never change a number's location() unless you know exactly what you are doing.

5. Adjusting System Parameters

The file apfloat.ini (must be in the current directory) can contain some (optional) information
about your system. It's highly recommended that you check the values especially if you plan to
do very long calculations. It can have the following lines:

Ramsize=41943040

This is your computer's memory size in bytes. An estimate of the program and operating
system code size is subtracted from this value to get the maximum available power-of-two or
three times a power of two block size.

CacheL1size=8192

The processor's level-1 cache size in bytes. This has no great effect on the performance, so if
you don't know it, you should probably leave it to 8192.

CacheL2size=262144

The processor's level-2 cache size in bytes. This has no great effect on the performance, so
you should probably leave it alone unless you are an optimization freak.

14

Cacheburst=32

The cache's burst size (or a cache line size) in bytes, typically set to 32 or 16. Again this has
no big effect. The cache parameters are only used in matrix transposition in the transform
algorithms (see appendix D), which takes only a very small part of the total program CPU
time.

Memorytreshold=131072

Longer data blocks than this are stored on disk by default. When the numbers are stored in
memory, the program runs slightly faster. Don't set it to too high or the program will swap or
run out of memory.

Blocksize=65536

Efficient disk I/O block size (in modints), should be <= Memorytreshold. Since a lot of data
is read from the disk in reverse order, you should probably set this to a quite large value for
good performance.

NProcessors=1

Number of processors in a multiprocessing system. For normal, single-processor desktop
computers the default value of 1 should be used. Not all versions of apfloat use this parameter.
Currently multithreaded versions of the six-step Fast Number Theoretic Transform are
implemented for Win32 threads and Posix threads. Also a multiprocessing program for
calculating pi is included in the apfloat package.

All of the above parameters can also be specified as environment variables. The environment
variables should be in uppercase (for example, RAMSIZE). The environment variables override
the settings in apfloat.ini, if both exist on a system.

A MAXBLOCKSIZE environment variable can also be specified, which will override the setting
calculated from RAMSIZE. This variable can be used to directly specify the maximum available
memory block size, in modints. It should be used with caution.

6. Multiplication of Very Large Numbers

This chapter was inspired by [5].

A multiplication is essentially a convolution. For example,
consider the numbers 123 and 456 presented as the
sequences {1, 2, 3} and {4, 5, 6}, respectively. The linear
convolution is presented in figure 2. If we want to do the
calculation using a circular convolution (and we will), the
sequences must be zero-padded to the length of the sum of
the lengths of the operands. In this case the sequences would
then be {1, 2, 3, 0, 0, 0} and {4, 5, 6, 0, 0, 0}.

From the convolution sequence carries must be calculated, since the numbers of the sequence
can be larger than the base used. For example if base 10 is used and the result from the
convolution is the sequence {4, 13, 28, 27, 18, 0}, it must be converted to a sequence where
all the numbers are less than 10. Since each number in the sequence represents one “digit” in

 1 2 3
 ⋅ 4 5 6

6⋅1 6⋅2 6⋅3
 + +

5⋅1 5⋅2 5⋅3
 + +

+ 4⋅1 4⋅2 4⋅3
41 133 282 271 18
 5 6 0 8 8

Figure 2: Convolution

the decimal expansion of the result, the 18 in the least significant position actually means that
the least significant digit is 8 and 1 should be added to the next digit. It's 27, so the second
least significant digit of the result is the lowest digit of (27+1) which is 8, and 2 is added to the
third least significant digit etc. Basically this is the standard addition scheme, as shown in
figure 2.

The convolution can be calculated very effectively using Fast Fourier Transforms. Normal
complex Fourier Transforms break down due to round-off errors with transforms longer than
a few million (according to [5]), so the transforms are done in the field of integers modulo a
prime p where p is of the form kN+1 and N is the transform length. This method also has
several other advantages like a simpler and more efficient memory usage. For a thorough
discussion, see appendix A.

In this program three different moduli are used for the convolution and the result is acquired
with the Chinese Remainder Theorem. This has the advantage of effective memory usage since
the numbers don't need to be split up to smaller parts to avoid overflow. Now if the modulus
is about 231 and the base used is 109, the maximum precision would theoretically be about 10
billion base units or 90 billion decimal digits. However there are three primes less than 231 of
the form kN+1 only up to N=225 when N is a power of two. Actually these three moduli allow
N to be 3�225, so the maximum transform length can be increased by 50% with a suitable
transform algorithm. This corresponds to about 220 million decimal digits. If more digits are
desired, a larger modulus must be used. This requires use of 64 to 128-bit arithmetic or other
tricks. In the 64-bit implementation the maximum precision is about 60 billion digits and in the
floating-point implementations about 790 trillion in the double version and slightly more than a
million in the short version.

After multiplication can be done efficiently, division, square root and other roots can be
calculated using Newton's iteration:

n
xax

xx
n
kk

kk
)1(

1

−+=+

Now xk converges quadratically to a–1/n.

The program includes optimized routines for multiplication and division when the multiplier or
divisor is a “short” number, in division a number with about 9 significant digits or less and in
multiplication about 450 digits (depends on your platform).

7. Performance Considerations

Although this program is optimized for optimal use of memory, you should have at least so
much memory that the transforms can be done in memory. Although the program has
optimized “two-pass” external memory transform algorithms (see [4] for the algorithm), disk
speed is so slow that performance will be close to zero (it can be more than 30 times slower
compared to the transform being done in memory). This means you should have at least about
1 free byte of memory per 1.125 decimal digits in the largest (longest) number in the
calculation. Maximum available memory is used only in power of two or three times a power
of two block sizes. For example if you have 32 MB of memory, you can use 24 MB of it for
the data if the program and the operating system fit in the 8 MB.

16

Disk speed is crucial if the numbers are stored intermediately on disk. With a relatively fast
CPU but a relatively slow disk the overall performance will suffer. Having an efficient disk
cache is also highly recommended.

For some reason the Borland C++ and Visual C++ versions don't work as fast as the djgpp
versions on Windows 95/98, although the code is virtually identical. On Windows NT the
performance is about the same. The suspected reason is in how Windows 95/98 manages its
memory. For maximal speed, you should get djgpp if you use MS-DOS, Windows 95 or
Windows 98. It's free, very flexible and it optimizes well. Djgpp is downloadable from
http://www.delorie.com/djgpp/ and various mirror sites.

Note that the djgpp versions can't probably use all the memory you may have installed on your
computer. Djgpp v1 seems to be limited to allocating 64 MB and djgpp v2 may be limited to
256 MB. If you have more memory than this and want to utilize it with apfloat, you may have
to use a Win32 version of apfloat. They should be able to use 2 GB of memory or even more.

If you plan use a non-Intel x86-based platform you should prefer a computer that supports 64-
bit integer arithmetic in the hardware (especially multiplication). Suitable processors are for
example the DEC Alpha, MIPS R4000 (or greater) and the UltraSPARC. In the 32-bit gcc
implementation the basic modint class multiplication uses long long ints for multiplication and
remainder. This will be slow if emulated in software with a poor compiler. The 64-bit
implementation doesn't use integer division hardly at all and is really fast for example on the
Alpha. The floating-point versions should be preferred only on computers with extremely
good floating-point performance and abysmally poor integer performance, or when a precision
of more than 60 billion digits is required.

The general 32-bit version doesn't use 64-bit integer arithmetic but both 32-bit integer and
floating-point arithmetic. It might be faster than the 32-bit gcc version if your processor
converts fast between floating-point and fixed-point data types, so you might want to
experiment.

7.1 Assembler Optimization

Hand-optimizing the code in assembler makes only sense when the compiler can't optimize the
code well. On RISC processors the compiler generates mostly better code than what could be
achieved with hand-optimization, since it automatically checks instruction scheduling and
other complicated things. Using assembler thus is useful only when special hardware-specific
instructions need to be used (like single to double-width integer multiplication).

However on older processors, which were not designed for easy and effective C compilation,
like the Intel x86 series, optimizing the critical parts in assembler can make the program
several times faster. This is obviously due to the small number of registers, bad instruction set
and overall ancient and inefficient processor design.

7.1.1 Modular Multiplication

The modint class multiplication (multiplication and then remainder) in the Number Theoretic
Transforms (see appendix A) is the most time-consuming single operation of the whole
program. That is why special attention was paid to making it as fast as possible.

Some processors, like the Intel x86 family, have special double-width multiplication and
division instructions in the hardware. That is, you can multiply two 32-bit integers and get the
whole 64-bit result, and divide a 64-bit number by a 32-bit number, supposing the quotient
and remainder fit in 32 bits. This seems naturally to be a very good scheme for doing the
modular multiplication, and is actually the best for 386 and 486 processors.

The modulo reduction can be done very effectively in some cases when the modulus is of
suitable form. For example, if the modulus is p=264–232+1 (which is prime and of suitable form
for radix-2 Number Theoretic Transforms up to length 232) the remainder of a 128-bit result
(from multiplying two 64-bit numbers) can be done with a few shifts, additions and
subtractions. Now suppose the result of a multiplication is 264A+B (for example if the result is
stored in two 64-bit registers, A is the contents of the upper word and B is the contents of the
lower word). Then

)(mod)12()12()122(2 3232326464 p BABAABA +−≡+−++−≡+
which is a shift (or two), an addition and a subtraction. Then the result is about 96 bits and the
operation can be performed again, which should produce a result of about 64 bits. Checks for
overflows might require a few extra instructions. This should in general be faster than a
normal division instruction (if available), and extremely fast if implemented in special
hardware.

This scheme is implemented in the 64-bit version of the kernel of this program, since there
exist three suitable primes for the Chinese Remainder Theorem: 264–240+1, 264–234+1 and 264–
232+1. With the two first primes the shifting scheme needs to be done three times to reduce the
remainder to 64 bits. This scheme doesn't work very well for 32-bit numbers. First there exist
only two primes of the suitable form: 232–230+1 and 232–220+1. If more powers of two are
added to or subtracted from the modulus, the number of instructions grows and a general-
purpose division will be faster. If the middle power of two (like 230 in 232–230+1) is very close
to the word size (232), very many shifts are required and again the scheme becomes slow.
Second, for reasonable transform lengths the middle power of two should be relatively large
(since must be p=kN+1 where N is the transform length) which makes the scheme useless,
since there simply doesn't exist suitable primes.

Another drawback is that the transform length must be a power of two which is not the case
for the Winograd Fourier Transform Algorithms (see [9], [10]). The WFTA is actually not
used in this program but the package includes optimized routines for the transform.

A general division approach which enables an arbitrary modulus was used in the 32-bit core
version of the program. Unlike the 386 or 486, the Pentium has a relatively fast FPU in which
the modulo reduction can be done more effectively than in the integer unit. Since the division
is always done by a constant, it can be replaced with multiplying by the inverse of the divisor.
Also the FPU registers have internally 64-bit precision, which makes this scheme possible.

18

Now if we want the remainder of a times b divided by m the procedure is as follows:

1. Multiply a�b.
2. Store the result in a temporary register.
3. Multiply by 1/m (precalculated).
4. Take the integer part.
5. Multiply by m.
6. Subtract from the temporary result stored in step 2.

The trickiest part is step 4. The x87 series coprocessors have a “round to integer” instruction,
which is very slow. When the result is known to be in a suitable range (that is below 263, which
is now the case, since a and b are less than 231) the result can be calculated by first adding 263

to the result and then subtracting 263. This simply makes the fractional bits to be shifted out,
since the mantissa's width is 64 bits. The processor's rounding mode must be first set to
truncation so that the fractional bits are simply discarded.

A question that arises now is that can round-off errors cause the result to be incorrect. For
example, when calculating with a finite wordlength calculator first 1/3≈0.333 and then
multiplying 3�0.333≈0.999 and taking the integer part, one doesn't get 1 as expected but 0
instead. It's easily seen that this cannot happen in the method used. First, m is always prime.
Second, a and b are less than m (and nonnegative). For the result a�b, when multiplied by 1/m,
to produce a decimal expansion like 0.999... the product a�b should be divisible by m. This is
obviously not possible, since m is prime. So there will always be a random enough fractional
part for the method to work.

Using the FPU the modular multiplication takes about 33 clock cycles on the Pentium whereas
using the integer unit it would take about 52 clock cycles.

Also the Pentium's FPU can start one floating-point instruction each clock cycle, but most
instructions have a latency of three clock cycles. Since all the steps 1. – 6. above are
dependent on each other, it's possible to perform three independent modular multiplications in
parallel using about as much time as one modular multiplication would take.

Also the Pentium can execute floating-point code and integer code in parallel. In some parts of
the code where modular multiplications can't be overlapped it's possible to perform for
example modular addition in the integer unit and modular multiplication in the FPU at the
same time. This makes some parts of the code almost twice as fast.

The Pentium Pro/II/III/Celeron series processors perform very well with the Pentium specific
optimizations implemented in apfloat. Although the P6 series processors use speculative
execution, the execution units themselves are architecturally very similar to those in the
original Pentium. The raw integer and floating-point processing power is quite similar to the
Pentium, overall performance per clock cycle being slightly higher because integer, floating-
point and memory instructions can all be executed at the same time (the original Pentium can
execute a total maximum of two instructions per clock cycle).

It is a good question if some P6 specific features could be used to develop a more efficient
FNT algorithm. The P6 has a more efficient and fully pipelined integer multiplication unit, for

example. The Pentium specific version already avoids unpredictable conditional branches, and
using the new conditional move instructions appear to bring no noticeable performance
improvement over the current code. Also changing the nested loops in the FNT to a single
loop, to avoid mispredicted branches, seems to have no significant effect. Currently, the
Pentium specific versions of apfloat should always be used with Pentium Pro/II/III/Celeron
processors.

7.1.2 Modular Addition and Subtraction

Addition and subtraction are also extensively used in the Number Theoretic Transforms. Since
the calculations are done modulo the modulus, an intuitively appealing scheme for addition is
to add the operands, then compare the result to the modulus and if the result is not less than
the modulus, subtract the modulus from the result. This would seem to require a conditional
jump: if the result is less than the modulus, jump past the next instruction, which would
subtract the modulus from the result.

Most modern processors have some kind of a branch prediction system, which predicts
whether the conditional branch will be taken or not and the following instructions are fetched
from the predicted address into the pipeline. This logic is usually based on how the branch
behaved before. In a loop for example, the branch is always taken and thus it is not very
difficult to guess that the branch will also be taken the next time. Processor manufacturers
often report that the branch prediction logic is correct more than 95% of time. This might very
well be true, since most code on average is loops or other parts of code which is executed the
same way over and over again. However, in the Number Theoretic Transform the conditional
branch is totally random, since the numbers tend to be totally random and 50% of time the
branch is taken and 50% of time it's not. Thus the branch prediction logic will be wrong about
50% of time. Most processors that have a branch prediction unit behave very badly when the
branch prediction logic is wrong. It can take ten clock cycles to clear the whole pipeline and
fetch new instructions from the correct address. Thus it would make sense to avoid a random
conditional jump at all costs.

Processors that were designed to be superpipelined (like the DEC Alpha series) have
conditional move instructions that eliminate this kind of situations where the pipeline is bound
to stall. Since the compiler optimizes the code to use these instructions, the problem
mentioned above is obviously avoided. However older processor designs, like the Intel x86
series (except the Pentium Pro and Pentium II/III), don't have this kind of instructions. The
modulo calculation can be done without branching, but it takes a few extra instructions. The
procedure for modular addition on the x86 processors is:

1. Add the operands.
2. Compare the result with the modulus. If the result is greater than or equal to the modulus,

the carry flag is set.
3. Subtract the carry flag from zero. Now the result is zero if the result of the addition was

less than the modulus, otherwise the binary representation is all ones.
4. Logical and the result from step 3 with the modulus. The result is the modulus if the result

of the addition was not less than the modulus, otherwise zero.
5. Subtract the result of step 4 from the result of the addition.

20

For modular subtraction the procedure is similar, but the carry flag is automatically set if the
result of the subtraction is less than zero and the modulus (or zero) is added to the result of
the subtraction.

The operations above are highly dependent on each other. Since the Pentium executes two
independent instructions on each clock cycle, the code can be made about twice as fast when
modular addition and subtraction are calculated in parallel. This is always the case in the
Number Theoretic Transforms.

7.1.3 A Note for Pentium and “Pentium” Users

Please note that the assembler optimization for the Pentium processor is really done
exclusively for the genuine Pentium. There are many Pentium (or 586) clone processors out
there (NexGen, Cyrix, AMD etc.) which may behave totally differently from the Pentium.
Apfloat's assembler optimization uses the Pentium's instruction pairing ability as effectively as
possible. The code might be far less efficient on another processor. Also most of the clone
586s have a slower floating-point unit than the Pentium (and possibly a faster integer
multiplication unit), so it's highly recommended to also test the 486 version of the program
and see which one runs faster if you have a non-Intel 586/686/whatever processor.

7.2 Hardware without a Double-Width Multiplier

Doing modular multiplication and especially the Chinese Remainder Theorem effectively
essentially requires hardware capable of doing double-width integer multiplication (e.g. a
multiplier that produces the full 64-bit product of two 32-bit integers). Since standard C gives
no simple tools to do this, the obvious solution would be to use assembler. When a general
implementation in C is required, there is a workaround, however.

The standard multiplication operator gives trivially the lower word of the result of the
multiplication. Acquiring the upper word is a bit trickier. Now, the floating-point unit of the
computer always calculates with the most significant bits of the numbers used. So the upper
word of the product can be calculated easily by converting the operandi to doubles,
multiplying them, subtracting the lower word of the product (from the integer multiplication),
multiplying by 2–32 and converting to an integer. Note that it's necessary to subtract the lower
word of the product from the product, since we don't know how the computer will round the
values used. If it truncates, it's not necessary. Most computers round to the nearest value,
however, so if almost all of the lowest bits of the product are ones, the resulting upper word
might be too big (since the fractional one bits don't get truncated, but rounded upwards). An
even better solution is to only subtract the most significant bit of the lower word of the
product. The round-off problem can't happen if it's zero, so this way we avoid subtracting too
much from the product. Some computers seem to round numbers very unpredictably
sometimes.

Since most modern computers have relatively fast floating-point units, this scheme can be
quite fast. The integer and floating-point code can even be executed in parallel in some cases.
The only bottleneck is converting integers to doubles and vice versa.

When suitable moduli are chosen, double-width multiplication can be quite well avoided in
modular multiplication. Since we're only interested in the remainder (which fits in, say, 32
bits), it would make sense to only use the least significant 32 bits in the whole operation. We
can get the lower 32 bits of the product from simple integer multiplication. Then we can
approximate the quotient of the product divided by the modulus by converting the operandi to
doubles and multiplying by the inverse of the modulus (converted to a double). The inverse of
the modulus should be slightly rounded down. Now subtract the modulus (integer) times the
approximated quotient (converted to an integer) from the product, using only the lowest 32
bits. Since the quotient was approximated and possibly one too small, the result might be
about twice the modulus. So when the moduli are chosen to be less than 231, we can still get
the remainder, since the result now fits in 32 bits accurately. Simply subtract the modulus once
if necessary.

7.3 Vector and Parallel Computers

This program is not really designed to be used in vector or parallel (super)computers. It's
designed for RISC processors and hierarchical cache-based memory systems, typically
personal computers and workstations. Performance on vector or parallel computers will
probably be close to scalar computers.

A multithreaded version of the NTT is available for some platforms. This constitutes only a
part of the program execution time, so it will not enable perfect scalability on SMP (symmetric
multiprocessing) systems. However, it should be possible (but not very easy) to implement the
CRT, addition/subtraction etc. on a vector or parallel computer. If disk-based numbers are
used, the disk transfer speed will probably remain the bottleneck, even if you have a very high
performance disk system, such as a RAID farm. Feel free to experiment.

22

Appendix A: Number Theoretic Transforms in Convolution

This text assumes the reader has some basic knowledge about elementary number theory, like
modulo arithmetic. For a good textbook on the subject read [1].

The Discrete Fourier Transform (DFT) of the N-long sequence x(n) is defined as

WnxkX kn
N

n

)()(
1

0
∑

−

=

= (1)

For an ordinary Fourier transform, W is defined as

eW N

iπ2−= (2)

where i is the imaginary unit. However, at present, we will not assume anything about W. The
inverse transform is

WkX
N

nx kn
N

k

−
−

=
∑=)(

1
)(

1

0

(3)

At present we are not interested in the transform itself, but a convolution. The cyclic
convolution c(n) of two sequences a(n) and b(n) of length N is defined as

)()()(*)()(
1

0

knbkanbnanc
N

k

−== ∑
−

=

(4)

assuming that a(n) and b(n) are treated as cyclic sequences, that is b(–1)=b(N–1) etc. Now
the convolution can be computed more efficiently in the Fourier domain. The convolution
corresponds to linear (element by element) multiplication in the Fourier domain. That is, to
calculate the convolution, first take the Fourier transforms of the sequences to be convolved,
multiply the corresponding elements in the transforms and then take the inverse transform.

The Discrete Fourier transform (1) and its inverse (3) can be calculated using the Fast Fourier
Transform in about NlogN operations instead of the N2 operations that the direct calculation
would require. If A(k) and B(k) are the Fourier transforms of the sequences a(n) and b(n), the
Fourier transform C(k) of the convolution sequence c(n) is

)()()(kBkAkC = (5)

and c(n) can then be calculated with the inverse transform. Now to see what requirements the
number W must meet in general for the cyclic convolution to work, substitute (1) to (5):

WjbWiakBkAkC jk
N

j

ik
N

i

)()()()()(
1

0

1

0
∑∑

−

=

−

=

== (6)

then use (3):

W
N

jBiA

WjBWiAW
N

WkC
N

nc

njik
N

k

N

j

N

i

jk
N

j

ik
N

i

kn
N

k

kn
N

k

)(
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
)()(

)()(
1

)(
1

)(

−+
−

=

−

=

−

=

−

=

−

=

−
−

=

−
−

=

∑∑∑

∑∑∑

∑

=

=

=

(7)

Now this is obviously equal to equation (4) if and only if

)()(
1

0

njiNW njik
N

k

−+=−+
−

=
∑ δ (8)

where δ(n) is the discrete delta function (1 when n=0 and 0 otherwise). So the sum in (8)
would be N when j=n–i and 0 otherwise. Now let's look at

W jk
N

=k
∑

−1

0

(9)

This is obviously N when j=0. Otherwise multiply it by (1–Wj), the result should be zero:

01

)1(

)1(2

)1(20
1

0

=−=
−−−−−

++++=−

−

−
−

=
∑

jN

jNNjjj

Njjjjk
N

k

j

W

WWWW

WWWWWW

�

�

(10)

So WjN=1. Since j was arbitrary (in fact jB0 (mod N)), obviously W must be a Nth root of unity
(also W is not 1 in general). In the “normal” Fourier transform this is of course true as in
equation (2). If W is in general an integer or some rational or real number, this criterion clearly
cannot be satisfied. However, a suitable W can be found in the field of integers modulo p when
p is a prime of the form p=kN+1 where k is an integer and N is the transform length. In this
case the Fourier Transform is called a Number Theoretic Transform (NTT). For a more
thorough discussion about why p must be kN+1 refer to appendix B.

So Number Theoretic Transforms are just ordinary Discrete Fourier Transforms but they are
done in a different number field. Most of the formulae and algorithms that apply for the DFT
also apply for NTTs. The most interesting property is probably that the NTT can be calculated
using a “fast” algorithm (Fast Number Theoretic Transform, FNT), like the DFT can be
calculated using the Fast Fourier Transform (FFT). For a rigorous development of the FFT
algorithm(s), see [7]. Just remember that W is now an integer and all the calculations are done
modulo p. For a clue about FFT implementation, see [3].

Number Theoretic Transforms have several advantages over the usual complex Fourier
Transforms:

- The transform is obviously real, so when transforming/convolving real data no special tricks
are required to avoid using double the space and work needed.

24

- Since all used numbers are always integers, no round-off errors can occur. This makes
possible to transform very long sequences (like N=246) with standard 53-bit resolution. Also
all “twiddle factors” in the FNT algorithms can be calculated efficiently using recurrence
relations.

- The computation can be done “in parts” and the final result recovered using the Chinese
Remainder Theorem. This is useful if the result overflows (the result numbers are only
calculated modulo p). Just do the same calculation modulo several different primes of the
suitable form and use the Chinese Remainder Theorem on the results. (For an explanation
of the Chinese Remainder Theorem and a description on the implementation see appendix
C.)

There are also some disadvantages:
- The transform itself has no use (it has no physical meaning like the Fourier Transform

represents frequency). So Number Theoretic Transforms are mostly useful for convolution
only.

- Long integer arithmetic is slower than floating-point arithmetic on most computers.

If one happens to have a computer with really poor long integer multiplication/division
performance but relatively good integer addition/subtraction performance, one might want to
use an algorithm with minimum number of multiplications for the calculation of the NTT.
These are of course the Winograd Fourier Transform Algorithms (WFTA) ([9] and [10]). The
algorithms can be used as is, but since they involve multiplications by cosines and sines
(actually always i�sin), some attention must be paid to what they correspond to in the number
theoretic field. A hint to this is given in [13].

For example, if we want to calculate cos30Û and i�sin30Û we must have a field that has a 12th
root of unity (since 30Û is one twelfth of the full circle). So p=k�12+1. Now let W be a 12th
root of unity in the field of integers modulo p. If we would be in the field of complex numbers,
W would obviously be eiπ/6=cos30Û+i�sin30Û. So we might assume that in the number theoretic
field also must hold W=cos30Û+i�sin30Û. Also it would make sense that always cos2x+sin2x=1
or in other words cos2x–(i�sinx)2=1. Note that there doesn't necessarily exist a fourth root of
unity (corresponding to i) in the number theoretic field.

Now if W is the Nth root of unity and

1
2

sin
2

cos

2
sin

2
cos

2

2 ≅

−

+≅

N
i

N

N
i

N
W

ππ

ππ

(11)

then (after simple algebraic manipulation)

W
W

N
i

W
W

N

2

12
sin

2

12
cos

2

2

−≅

+≅

π

π

(12)

Trying these formulae out with the WFTA algorithms one can see that they really work.

Since most computers today are cache-based systems the FNTs (like any Fourier Transforms)
can be calculated more efficiently with the “four-step” algorithm [4]. For a short proof see
appendix D. Doing the transform in shorter blocks results in high data locality and thus a
better cache hit rate.

26

Appendix B: Primitive Roots

For a more rigorous and general discussion, see for example [2].

This text concentrates on primitive roots of primes only for reasons of simplicity. From
elementary number theory we know that for all nonzero integers a, when p is prime

)(mod11 p ap ≡− (13)

 (From now on we just might suppose that the modulus p is prime). For all prime moduli there
exists a primitive root r (actually many). A primitive root r is an integer that

when the integer x goes from 1 to p–1,
then rx (mod p) goes through all the numbers 1...(p–1) in some order.

The order of an integer a is the smallest positive integer x for which ax≡1 (mod p). So the
order of a primitive root (modulo a prime p) is p–1.

Since ap–1≡1 (mod p) always, it is obvious that if the order of a is less than p–1, the order
should divide p–1. To see this, notice that when you start multiplying 1�a�a�a�... (mod p) when
the result of the multiplication is 1, the sequence starts over again. And when you have done
the multiplication p–1 times, the result must be 1. So the order of a must divide p–1.

To test whether a number a is a primitive root modulo p, we want to know whether the order
of a is p–1 or less. The first thing to do is to factor p–1. This can be done effectively (when
p<232) with a precalculated table of primes less than 216 and simple trial division. Then if

)(mod1
1

p a f

-p

B (14)

for all factors f of p–1, a is a primitive root modulo p. Note that one only has to do the test for
all prime factors of p–1. There's no need to check if a to any smaller power is 1, since raising
the 1 to some higher power is still 1, so one can just check the highest possible powers.

There are lots of primitive roots for all primes, so finding one by directly testing numbers
should not be too difficult. An easy approach is to test prime numbers a=2, 3, 5, 7, ...

An example:

Let p=232–220+1. Then p is of the form kN+1, that is needed for doing (Fast) Number
Theoretic Transforms up to length N=220. The factorization of p–1 is p–1=220

�32
�5�7�13.

Now start testing numbers a=2, 3, 5, 7, ... and see if

)(mod1

)(mod1

)(mod1

)(mod1

)(mod1

13

1

7

1

5

1

3

1

2

1

p a

p a

p a

p a

p a

p

p

p

p

p

B

B

B

B

B

−

−

−

−

−

(15)

(the first a for which this occurs is a=19).

A root W of order N, that is, WN≡1 (mod p), but Wn
B1 (mod p) when 0<n<N, can be

calculated with W≡rk (mod p), when p=kN+1. So WN≡rkN≡rp–1≡1 (mod p).

Note that now WN/2 ≡ –1 (mod p), so the decomposition of the Number Theoretic Transform
to a (radix-2) Fast Number Theoretic Transform really works (just like the FFT). To see this,
note that WN ≡ 1 (mod p), and so WN/2 ≡ +1 or –1 (mod p). But WN/2 can't be 1, since then W
would be a root of order N/2, and it isn't.

28

Appendix C: The Chinese Remainder Theorem

This is basically the Chinese Remainder Theorem algorithm from [6].

The Chinese Remainder Theorem (CRT) gives the answer to the problem:
Find the integer x that satisfies all the n equations simultaneously:

)(mod

)(mod

)(mod

)(mod

22

11

nn

kk

prx

prx

prx

prx

≡

≡

≡
≡

�

�
(16)

We will assume here (for practical purposes) that the moduli pk are different primes. Then
there exists a unique solution x modulo p1�p2�...�pn. The solution can be found with the
following algorithm:

Let P=p1�p2�...�pn.

Let the numbers T1...Tn be defined so that for each Tk (k=1, ..., n)

)(mod1 p T
p

P
kk

k

≡ (17)

that is, Tk is the multiplicative inverse of P/pk (mod pk). The inverse of a (mod p) can be found
for example by calculating ap–2 (mod p). Note that a�ap–2≡ap–1≡1 (mod p).

Then the solution is

)(mod P Tr
p

P
Tr

p

P
Tr

p

P
x nn

n

22

2

11

1

+++≡ � (18)

The good thing is that you can calculate the factors (P/pk)�Tk beforehand, and then to get x for
different rk, you only need to do simple multiplications and additions (supposing that the
primes pk remain the same).

When using the CRT in a Number Theoretic Transform, the algorithm can be implemented
very efficiently using only single-precision arithmetic when rk<pk for all k. Now calculate first
P/pk and Tk for all k (note that this only needs to be done once). Then calculate

)(mod kkkk pTry ≡ (19)

for all k. Now the solution is

)(mod2
2

1
1

P y
p

P
y

p

P
y

p

P
x n

n

+++≡ � (20)

Note that multiplying a multiprecision number P/pk with a single-precision number only
requires single-precision arithmetic (supposing your hardware does double-width
multiplication). Also the reduction modulo P in the final calculation obviously only needs
simple compares and subtractions, since (P/Pk)yk is always less than P.

30

Appendix D: The “Four-Step” FFT Algorithm

The Discrete Fourier transform X(k) of the data x(j)

)()(
1

0

jxWkX jk
N

j
∑

−

=

= (21)

can be computed more effectively in computers with a cache memory with the “four step”
algorithm. Assume that the transform length N can be factored to N1N2. Now treat the data
like it was stored in a N1×N2 matrix. Assume that the data is stored in the matrix the “C” way,
that is the matrix element Ajk (row j, column k) is stored at linear memory address jN2+k.

The algorithm is as follows:

1. Transform each column, that is do N2 transforms of length N1.
2. Multiply each matrix element Ajk by W±jk, the sign being the sign of the transform and W the

Nth root of unity of the number field used.
3. Transpose the matrix.
4. Transform each column, that is do N1 transforms of length N2.

Now the proof that the algorithm actually works:

From now on we'll only use linear addresses of the data.

Step 1.

In column k2 of the matrix a transform of length N1 is performed. So the appropriate N1th root
of unity for that transform is WN2. So the element in row k1 and column k2 becomes

)()(221

1

0
2211

211

1

1

kNjxWkNkX Nkj
N

j

+=+ ∑
−

=

(22)

Step 2.

Multiplication.

)()(22112212
21 kNkXWkNkX kk +=+ (23)

Step 3.

Transposition.

)()(22121123 kNkXkNkX +=+ (24)

Step 4.

Again in column k1 of the matrix a transform of length N2 is performed. So the appropriate
N2th root of unity for that transform is WN1.

)()(1123

1

0
1124

122

2

2

kNjXWkNkX Nkj
N

j

+=+ ∑
−

=

(25)

Substituting X3(j2N1+k1) from step 3 yields (noting that now k2=j2)

)(2212

1

0

122

2

2

jNkXW Nkj
N

j

+= ∑
−

=

(26)

Again substituting X2(k1N2+j1) from step 2 yields

)(2211

1

0

12122

2

2

jNkXW kj+Nkj
N

j

+= ∑
−

=

(27)

Finally substituting X1(k1N2+j1) from step 1 yields

)(221

1

0

1

0

211

1

1

12122

2

2

jNjxWW Nkj
N

j

kjNkj
N

j

+= ∑∑
−

=

+
−

=

(28)

which is by changing the order of the summation

)(221

1

0

1

0

12122211

2

2

1

1

jNjxW kjNkjNkj
N

j

N

j

+= ++
−

=

−

=
∑∑ (29)

Note that

kjNkjNkjNNkjjNjkNk 121222112121221112))((+++=++ (30)

and since WN1N2=WN=1 also Wj1k2N1N2=1 and thus the final result can be presented as

)()(221
))((

1

0

1

0
1124 221112

2

2

1

1

jNjxWkNkX jNjkNk
N

j

N

j

+=+ ++
−

=

−

=
∑∑ (31)

Now this is exactly the same as the original Discrete Fourier Transform, when we note that the
summation is just the same, only factored to two parts which comes from factoring N to N1N2.
Simply mark k with k2N1+k1 and note that j going from 0 to N–1 is equivalent to j1N2+j2 with j1

going from 0 to N1
–1 and j2 going from 0 to N2

–1 for each j1 in the inner loop. So X(k) is
equivalent to X4(k2N1+k1). =

[4] has a more thorough discussion about the subject. Some ideas that were used in this
program are for example the “six-step” method, very similar to the “four-step” method:

1. Transpose the matrix.
2. Transform the rows.
3. Multiply by W±jk.
4. Transpose the matrix.
5. Transform the rows.
6. Transpose the matrix.

This method has the advantage that the short transforms are done in linear memory blocks.
This is a requirement for any cache-based memory system to function effectively. The matrix

32

transposition is a very fast operation and can be performed in place when N1=N2 or N2=2N1

and the array fits in memory. When doing convolution only, one can save the last transposition
in the forward transform and the first transposition in the inverse transform. [4] describes the
algorithm carefully.

A disk-based “two-pass” transform algorithm described in [4] was also implemented. It
requires only two passes through the data set and is theoretically very effective. The
implementation avoids transposing the whole matrix when doing convolution. This is
accomplished by first reading N1×b blocks into memory so that the blocks just fit in memory.
The block is transposed, each row is transformed, the block then transposed again and written
back to disk. After the columns the rows are transformed. In the inverse transform the order is
reverse.

However, the “two-pass” algorithm is required only when the whole array can't fit in the
memory and thus the transform length will be very big. In practice the algorithm is so slow for
disk storage that it's useless. (Actually the algorithm is not intended for disk storage at all but
only slower hierarchical memory with seek times and transfer rates more typical for memory
chips than disk. This is mentioned in [4].)

Appendix E: Algorithms for π
These are probably the most efficient algorithms for calculating π known to man. Proofs and
convergence analysis can be found in [8]. All calculations must be done with the desired
precision of the final result.

The Borweins' quartic algorithm:

)1(2)1(

1)1(

1)1(

246

12

2
111

324
11

4/14

4/14

1

0

0

yyyyaa

y

y
y

a

y

kkk
k

kkk

k

k
k

+++
+

++

−

−

+

++−+=

+−
−−

=

−=

−=

(32)

Now ak approaches 1/π quartically, that is the number of correct digits approximately
quadruples in each iteration.

The Gauss-Legendre algorithm:

)(2

2

4

1
2

1

1

2
11

1

1

0

0

0

aatt

bab

ba
a

t

b

a

kk
k

kk

kkk

kk
k

++

+

+

−−=

=

+=

=

=

=

(33)

π is then approximated by (ak+bk)
2/(4tk). The algorithm has quadratic convergence that is the

number of correct digits approximately doubles each iteration.

The Chudnovskys' algorithm:

)640320(

54514013413591409

)!3()!(

)!6(
)1(

640320

121
33

0
3 k

k

k

k

kk

k +−= ∑
∞

=π
(34)

The series must be calculated using the binary splitting algorithm to be efficient. A good
explanation of the binary splitting algorithm can be found for example in [14].

34

References

[1] Kenneth H. Rosen: Elementary Number Theory and Its Applications, Third Edition,
Addison-Wesley 1993.

[2] James H. McClellan: Number Theory in Signal Processing, Prentice-Hall 1979.
[3] William H. Press et al: Numerical Recipes in C, Second Edition, Cambridge University

Press 1992.
[4] D. H. Bailey, “FFTs in External or Hierarchical Memory”, Journal of Supercomputing,

vol. 4, no. 1 (March 1990), p. 23 – 35. Also available from
http://www.nas.nasa.gov/NAS/RNRreports/dbailey/RNR-89-004/RNR-89-004.o.html

[5] David H. Bailey: “The Computation of π to 29,360,000 Decimal Digits Using Borweins'
Quartically Convergent Algorithm”, Mathematics of Computation, Volume 50, Number
181, January 1988, Pages 283 – 296. Also available from
http://www.nas.nasa.gov/NAS/TechReports/RNRreports/dbailey/pi/pi.o.html

[6] Henri J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2nd
edition, Springer-Verlag 1982.

[7] E. Oran Brigham: The Fast Fourier Transform, Prentice-Hall 1974.
[8] J. M. Borwein & P. B. Borwein: Pi and the AGM&a Study in Analytic Number Theory

and Computational Complexity, Wiley 1987.
[9] S. Winograd: “On Computing the Discrete Fourier Transform”, Mathematics of

Computation, Volume 32, Number 141, January 1978, Pages 175 – 199.
[10] Harvey F. Silverman: “An Introduction to Programming the Winograd Fourier

Transform Algorithm (WFTA)”, IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol. ASSP-25, No. 2, April 1977, Pages 152 – 165.

[11] Jörg Arndt: The Hfloat Package. Available from http://www.jjj.de/

[12] David H. Bailey: MPFUN:A Portable High Performance Multiprecision Package.
Available from
http://www.nas.nasa.gov/NAS/TechReports/RNRreports/dbailey/RNR-90-022/RNR-90-022.html

[13] David H. Bailey: “Winograd's Algorithm Applied to Number Theoretic Transforms”,
Electronics Letters, Vol. 13, September 1977, Pages 548 – 549.

[14] Jörg Arndt, Christoph Haenel: Pi: Algorithmen, Computer, Arithmetik, Springer-Verlag
1998.

Revision History

2.32 April 17th, 2001
- Minor bug fixes.

2.31 October 22nd, 2000
- 64-bit versions for Borland C++ and Microsoft Visual C++.
- Minor bug fixes and performance improvements.

2.30 August 13th, 2000
- Parallel processing π calculation program.
- Multithreading FNT algorithms for Win32 and Posix threads.
- Saving and loading numbers to/from disk using the swapto() and swapfrom()

member functions.
- Environment variables for system settings as an alternative to those in the file

apfloat.ini.
- Some bug fixes and small performance improvements.

2.21 July 29th, 2000
- Various bug fixes and small performance improvements.
- 64-bit version for Linux.

2.20 July 7th, 2000
- Stream input operators.
- Modulo power function with a sample RSA encryption application.
- Various bug fixes and some performance improvements.

2.10 April 7th, 2000
- Some performance improvements.
- Versions for Microsoft Visual C++.
- 64-bit version for djgpp.
- Some bug fixes.

2.00 February 27th, 2000
- Improved the multiplication of short numbers dramatically.
- Calculating π is more than two times faster now with the Chudnovsky brothers'

binsplit algorithm.
- Some minor bug fixes.

1.51 June 16th, 1999
- Some critical bug fixes.

36

1.50 October 8th, 1998
- Added integer and rational data types.
- Several bug fixes.
- Hopefully some portability improvement, especially with Borland C++ 5.02 and gcc

2.8.1.
- Some performance improvement, especially in the double version.

1.41 September 15th, 1997 (Not publicly released)
- Added a Win32 version with a Windows GUI.
- Optimized the code for bcc32.
- Minor bug fixes and performance improvement.

1.40 July 5th, 1997
- The transform length can have a factor of three, this can make the program

sometimes 25% faster.
- fmod() and modf() functions.
- More portable.

1.33 October 30th, 1996
- The initialization functions apinit() and apdeinit() are now called

automatically at program start and exit.

1.32 October 10th, 1996
- Fixed problems caused by the C++ complex type which is a template class in the

newest ANSI C++ draft.

1.31 August 22, 1996
- Added tapfloat class to store transformed apfloats. This makes multiplying by

constant apfloats significantly faster.

1.30 July 31, 1996
- Made apfloat faster. Especially the Pentium version is about 50% faster and the

Alpha version seems to be almost 200% faster.
- Using different bases is easier.
- Several minor changes.
- Added a more general 32-bit version which doesn't need gcc's long long ints.
- Realized that apfloat is not ANSI C++ compatible (one reason being that there is no

ANSI C++ standard, just a draft).

1.20 July 1, 1996
- Support for arbitrary bases (not just decimal).
- Complex number arithmetic.
- Elementary transcendental functions (exp(), log(), sin(), cos(), ...).
- Several major and minor bug fixes.

1.10 May 15, 1996
- Added expandability to various types of processors and different raw data types (the

rawtype data type). The core functions are always in the files raw.h and bigint.cc,
rest of the files are common for all versions. Included core files for:
- 32-bit: djgpp/Linux 486 and Pentium, general Unix gcc, bcc32
- 64-bit: general Unix gcc, DEC Alpha
- pure floating-point (doubles or floats): practically any compiler

- Floor and ceiling functions (floor(apfloat) and ceil(apfloat)).
- Data size and precision are now of type size_t so that 64-bit computers can access

more than 4GB of memory.
- Slightly improved the 32-bit Pentium version performance.
- Several minor changes.

1.02 May 11, 1996
Fixed a bug in the character string apfloat constructor.

1.01 May 6, 1996
Fixed a minor bug in the character string apfloat constructor.

1.00 March 20, 1996
Initial release.

